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Abstract—In this paper, we are investigating the optimal
radio range minimizing the energy globally consummed by a
geographical routing process. Considering a geographical greedy
routing protocol and a uniform distribution of nodes in the
network area, we analytically evaluate the energy cost of a
multi-hop communication. This cost evaluation corresponds to
the asymptotic behavior of the routing protocol and turns out to
be very accurate compared to the results obtained by simulations.
We show that this cost is function of the node intensity and we
use this result to deduce the optimal radio range. We evaluate
this range with two energy consumption models, the first one
considering the energy consumed by transmission operations only
and the second one considering both transmission and reception
operations. These results can be used in two ways. First, the
nodes range can be tuned in advance as a function of the expected
node intensity during an off-line planning. Second, we propose an
adaptative algorithm where nodes tune their powers according
to an on-line evaluation of the local node intensity.

I. INTRODUCTION

A wireless ad hoc network is formed by a group of wireless
hosts without any infrastructure. To enable communication,
hosts cooperate among themselves to forward packets on
behalf of each others. In particular, sensor networks are
composed of low-power sensing devices used to collect data
in a given area or to monitor and track remote objects. As they
are equipped with a battery, energy is a scarce resource which
limits the life of the network. Therefore, the stack of protocols
used to maintain the network, collect and broadcast messages
have to be chosen in order to minimize the consumed energy.

Classical ad hoc routing protocols are usually unadapted
to sensor networks. For example, they are responsible for
the dissemination of control packets which is not negligible
in term of energy consumption. They generally involve the
storage of topology informations and periodical computations
of paths which are a serious drawback in the case of sensor
nodes with low memory and CPU capacities; especially, in
the case of large networks composed of several thousands of
nodes such as microsensor networks [2].

In opposition to the energy consuming ad hoc routing pro-
tocols, stateless protocols, and in particular geographical ones,
are generally envisaged. Under the assumption of some nodes
relative positions knowledge, geographical routing protocols
are very efficient regarding the different resources constraints:
memory as the protocol is stateless, energy as the protocol
does not disseminate many informations and computation as
the choice of a next hop is mainly greedy and based on local
geographic informations. For example in GPSR [3] (Greedy
Perimeter Stateless Routing) of MFR [6] (Most Forward
Progress), the closest destination neighbor is chosen as next
hop.
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A. Contributions

In this paper, we are investigating the optimal radio range
minimizing the energy globally consumed by a geographical
routing process. It has been shown in [4] that such a global
optimal radius exists for specific contexts, when a regular pat-
tern of nodes is assumed, and that this optimal radius depends
on the considered routing mechanisms. In [7], authors study
the optimal mean size of a hop given a realistic MAC layer.
The MAC layer consists in emitting a packet at a given slot
with probability p independently of other nodes and previous
transmissions. The probability of transmission success is then
a function of the distance between the transmitter and the
receiver and the sum of the interferences generated by all other
simultaneous transmissions. The quantity which is maximized
is the product of the probability that the transmission succeeds
and the hop size. If the hop size increases, the probability of
success decreases as more transmissions will interfere. Authors
deduce an optimal value for the hop size and for the parameter
p. The approach is closed to what is done in out paper. Authors
try, at each hop, to maximize the progress to the destination
or equivalently to minimize the number of hops for the path
between the source and the destination. In their case, they
look for a tradeoff between the hop size and the generated
interferences; in our case we look for a tradeoff between the
hop size and the energy consumption.

Considering a geographical greedy routing protocol and a
uniform distribution of nodes in the network area, we analyti-
cally evaluate the energy cost of a multi-hop communication.
This cost evaluation corresponds to the asymptotic behavior
of the routing protocol and turns out to be very accurate
compared to the results obtained by simulations. We show
that this cost is function of the node intensity and we use
this result to deduce the optimal radio range. We evaluate
this range with two energy consumption models, the first one
considering the energy consumed by transmission operations
only and the second one considering both transmission and
reception operations.

These novel results can be used in two ways. First, the
range of the nodes can be tuned in advance as a function
of the expected intensity of nodes during an off-line design
and provisioning. Second, we propose a distributed adaptive
algorithm where nodes tune their powers according to an on-
line evaluation of the local node intensity.

The paper is organized as follows, in Section II and Sec-
tion III we present the model and the geographic routing
protocol we consider for both analytical studies and simu-
lations. In Section IV, we briefly present the computation
of the cost function. In Section V, we study the cost of
the energy consumed by transmitters and the related optimal



radius when nodes are distributed in the plane. In Section VI,
we extend these results to consider the energy cost induced by
reception operations. Conclusions and future works are given
in Section VIIIL.

II. MODELS

We model a sensor network by a point process distributed
in IR?. We consider a homogeneous Poisson point process ®
of intensity A.

We consider a source S located at the origin and a des-
tination D such that |S,D| = d. Two nodes x and y can
communicate if and only if d(z,y) < Ryae With Rypq, being
the maximum radio range that a node can achieve. Finally,
we focus on the MFR (Most Forward Routing [6]) routing
algorithm where each node on a path selects as next hop
the node the closest to the destination within its radio range
(Rmaac)-

We evaluate the cost of a multi-hop communication between

S and D as
N N

Cost = E[Z ri + Z c|
i=1 i=1

where N is the number of hops from S to D, r; is the size of
the i'" hops, « is the distance-gradient value , c is a constant
cost corresponding to signal processing. We consider the mean
value of this cost. This corresponds to a classical expression
of the energy spent during a transmission [4], [5].

We note that without the constant in the energy cost (¢ = 0),
the optimal radio range which minimizes the cost function is
nill. In this case, the optimal algorithm consists in choosing
as next hop the closest node of the current node but which is
closer to the destination than the current node. This routing
algorithm has been recently studied in [8].

III. PROBLEM STATEMENT

Considering the MFR routing algorithm, the path from the
source to the destination may be represented by a Markov
chain. Unfortunately, even if the routing decision is local,
the length and the location of the next hop depend on the
distance between the current node and the destination. In order
to release from this dependency, we choose to consider the
asymptotic behavior of the hop lengths as d = |S, D| tends to
infinity. With this assumption, the progress made by one hop
is no more a function of the distance to the destination. We
use this hop length to approximate the cost function. The cost
is then supposed to be linear with the hop distance:

Cost = E[N]E[r*] + E[N]e

We evaluate E[N] as ﬁ where a is the progress of a hop on
the line (S, D) joining the source and the destination. Figure 1
illustrates the different notations. As we suppose d tending to

infinity, we have a = r cos . The cost function is finally:

d
E[r cos 6]
This approximation has been shown to be very accurate by

simulations. In the computation of E[a] and E[r®] we do not
take into account the correlation between two successive hops.

Cost (E[r*] + ¢) (1
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Fig. 1. Notation of the random variables used in the cost function.
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Fig. 2. The different notations

The distribution of the hop lengths depends on the location of
the previous hop due to the Markovian nature of the routing
algorithm. This dependency is due to the fact that the selection
of a hop induces a region without any node. As simulations
will show, neglecting this correlation has a very small impact
on our estimation of the energy cost. Indeed, the next hop is
chosen the closest to the destination and thus, in most cases,
far from the current node. This limits the effect of the empty
interval.

All these assumptions have a weak impact on the real cost
as it will be shown later in this paper where simulations and
analytical results are compared.

IV. ANALYTICAL COMPUTATION OF THE COST FUNCTION

In this Section, we briefly present the computation of E[r]
and E[r cosf] which allows us to express the cost given by
equation 1.

a) Computation of E[r®]: In a first time we compute
the distribution of the random variable r. More precisely, we
compute P(r < u) for u € [0, Ryqz] in order to obtain the
density function of r.

Let be u € [0, Ryazl). If there is at least one point in
S(u, Raz) as represented in Figure 2 then r > u. We have,

P(r<u)=P(r <ul®(S(u, Rmaz)) =0)

X exp {—/\|S(Ua Rmaz)|}



We compute P (1 < u|®(S(u, Rimaz)) = 0). It is equilavent
to compute the probability that the first point reached by
S(v, Rimas) when v increases (from wu to R,,q.) is in the
half-circle of radius « denoted B, rather than in the two bands
denoted C'(u, 0, R;q.) as represented in the Figure 2.

In order to compute this probability, we project the points
on the horizontal axe (represented in Figure 2) to obtain
two point processes on the line. The projection of the points
in C(u,0, Ryq.) leads to the point process N and the
projection of the points of the half-circlee B,, leads to the point
process Np. We have then two inhomogeneous Poisson point
processes. With this notations, {r < u|®(S(u, Rmaez)) = 0}
if and only if the closest point to 0 (in Figure 2) belongs to
Np rather than N¢. From the intensity measures of the two
point processes, we obtain P(r < u|®(S(u, Rpmaz)) = 0) and
after simple but heavy computation, we obtain:

“ o
]P’(rgu)—)\/o %|S(u—z,u)|

AT R?
x exp {—A|S(u — &, Rynaz)| tdx + exp {%

The last exponentiel corresponds to the probability that
there is no node in the half-circle of radius R,,.;. In this
case v = (. The distribution of r consists of an atom of
size exp{—%} at 0, and a component distributed on

(0, Rypaz) with density:

1
fr(u) = 4)\u/0 V1—1? exp{—)\Rfsz(Rz;yaz)}

x (14 Xy VR, — w2 dy

and

Romax
E[r¢] = /0 u® fr(u)du

b) Computation of E[rcos(#)]: The computation of
E[r cos ()] is easier. {rcos () > u} if and only if there is at
least a point in the area S(u, Ryaz):

P (rcos(f) >u) =1—exp{—M\S(u, Rmnaz)|}

and

Rmaa
E[rcos(0)] = /0 (1 —exp {—A|S(u, Rmnaz)}|) du

V. EVALUATION

In this Section, we analyze the impact of the radius on the
energy cost. We evaluate the energy cost using the function
given by equation 1.

More precisely, we compare the proposed analytical cost
value with cost results obtained by simulations. We then
compare our analytical optimal radius with other results found
in the litterature. We discuss the benefit of using our analytical
optimal radius and compare our results to the least costly
path. This path is found using the Dikjstra algorithm. In the
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Fig. 3. Observation window used for the simulations.

last Subsection, we propose a distributed adaptative algorithm
which allows a node to evaluate its local intensity and to
deduce the radio scope it should use to minimize the global
energy consumption.

c) Simulation model.: We consider a square of size D x
1.1d with D = 10R,,,o- The source and the destination are
located at (0,2) and (d,Z) as illustrated in Figure 3. The
factor 1.1 is to handle the case where the last path forwarder is
on the right of the destination. In this window, a homogeneous
Poisson point process of intensity A is generated. Routing is
performed according to MFR.

The measured quantities are considered only when there is
a path between the source and the destination. Therefore, we
only consider process intensities A for which a path exists
with a no negligible probability. The different quantities are
evaluated as the mean of 2000 samples.

A. Analytical results versus simulations

d) The cost function: In Figure 4, we compare the energy
cost obtained analytically with the energy cost obtained by
simulations. We make R,,,, vary from 50 to 100. It appears
that our analytical cost function is very accurate and as a
consequence, our analytical optimal radio range gets very close
to the real optimal one.

In this Figure, we also compare the energy spent with our
optimal radio range to the global minimum. In order to find
this global minimum we consider that the radio range of nodes
is not limited. Therefore, there is a link between all possible
pairs of nodes. To each link, we associate an energy cost (r®+c
where 7 is the length of the link) equal to the energy needed to
transmit on the link. Finally, we apply the Dijkstra algorithm
to find the path which minimizes the consumed energy. For
the considered intensity, it appears that the paths obtained with
the geographical algorithm are very close to the global optimal
paths. The difference is less than 3%. It is interesting to note
that using a statefull routing protocol which allows the node
to use the best path in terms of energy consumption will only
reduce the cost by less than 3%. The complexity brought by
the routing protocol (broadcast of control packets, routing table
maintenance, computation of the shortest paths, etc.) is not
worth such a little improvement.

B. Impact of the assumptions on the accuracy of the obtained
optimal

e) Impact of d: The result of the previous paragraph
is obtained with d = 2000. We have assumed that the cost
function was proportional to d. As explained earlier, it is true
for large d whereas small values of d can interfere with the
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Fig. 4. Comparison of the cost function obtained by simulations with the
cost function obtained analytically as Rmaz varies from 50 to 100 meters.
A = 0.002547, mean number of neighbors varying from 20 to 80 as Rmax
varies from 50 to 100, d = 2000
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Fig. 5. Comparison of the normalized cost function obtained by simulations
with the cost function obtained analytically as Ryp,qz varies from 50 to 100
meters. A = 0.001273, mean number of neighbors varying from 10 to 40 as
Rynaz varies from 50 to 100 meters.

assumed stationarity of the hops size. In order to evaluate the
impact of d on the cost function, we compare C‘f;t obtained
analytically and the cost obtained by simulation. In Figure 5,
we plot this normalized cost function for several values of
d (d = 250, 500, 1000 and 2000). We observe that when
d = 250 and 500, these costs fluctuate for certain values of
Ryna.. However, it appears that even when d is small, the
optimal found with our analytical cost function is still very
accurate.

f) Mean cost versus sample cost: As the mean cost is
not equal to the cost of all the samples, the optimal radius
deduced from the mean cost may be far for some samples
and thus may lead to poor performances for these samples.
Indeed, for some statistical distributions, the mean value of
the random variable can be really different from the observed
samples. Power law distribution for instance shows such a
behavior: there are a lot of observations with small values and
sometimes a very high value. It leads to an average which
does not appear in the samples. In Figure 6, we plot the mean
cost (the same as in Figure 4), the minimal value among all
the samples and the maximal value among all the samples.
More specifically, for each R,,,,, we compute the cost for
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Fig. 6. Comparison of the mean cost function obtained by simulations with
the lowest and highest values of the samples. A = 0.002547, mean number
of neighbors varying from 20 to 80 as Ryqq varies from 50 to 100 meters.
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Fig. 7. The optimal radius Rop¢(A) obtained from the simulations and from
the analytical formula.

1000 samples and we keep the min and max costs from these
1000 values. The curves obtained from the 1000 samples are
thus bound by these “min” and “max” curves. It appears that
the minimal and maximal values are not far from the mean
value and that the optimal radius does not change. Therefore,
the optimal radio range deduced from the mean cost should
offer very good performances for all the samples.

C. Optimal value of Ry

In Figure 7, we plot the optimal maximal radio range
Ropi(N) obtained by minimization of the cost function de-
scribed in 1.

It is interesting to note that when the intensity tends to
infinity }he optimal radius R, () tends to a constant Ro, =

ail) “ for a > 1. Indeed, when the intensity becomes really
important, the path becomes very close to the line joining the
source and the destination. The optimal radius R., is then
easily deduced from a model where nodes are distributed on
the line.

D. An adaptive algorithm

Our study shows that the optimal radius is a function of the
intensity of the nodes. However, this intensity is not always
known in advance. In sensor networks, the intensity of the
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Fig. 8. Cost function with the adaptive algorithm.

nodes may be fixed in order to guarantee a certain coverage
of the sensored area. Thus, for such networks, radio range of
the nodes may be tuned off-line in the sensors according to
the intensity. In most of the others wireless multi hop wireless
networks, the global intensity of the process is not known in
advance. Therefore, we propose an adaptive algorithm which
allows a node to choose its radio scope as a function of its
neighborhood. We assume that each node has a certain initial
radio range Range and that each node knows the number of
nodes in its radio range. The local intensity is then evaluated
as :

[number of nodes in the radio range|

A= mRange?

Each node then evaluates its optimal radius as a function
of \: an array gives the radius w.r.t. the evaluated intensity.
We simulate this adaptive algorithm to compare with the
optimal cost obtained previously. We consider the same model
of simulation as in the other Sections. Each node has an
array of 22 values which maps the estimated intensity and the
corresponding optimal radio range. This optimal radio range
are the values obtained in Section V-C using our analytical
study. In Figure 8, the cost between the adaptive algorithm
and the optimal cost where the global intensity is known are
compared. In this Figure, the initial range Range is equal to
100. The adaptive algorithm gives very good results as its cost
is the same as the optimal cost with the intensity being known.

VI. COST INCLUDING THE RECEPTIONS

In the previous Sections, only the cost induced by the trans-
missions has been taken into account. However, receptions also
consume energy. As mentioned in the Introduction, for some
technologies, receptions are in the same order of magnitude
as transmissions in terms of energy consumption ([1]). If we
add a cost v for each reception, the global cost becomes:

N N N
Cost =E[> 18+ e+ ®(By, (1))
i=1 i=1 i=1

where ®(B,,(r;)) is the number of receptions generated by
the 7" transmissions (z; is the location of the 7' transmitter).
In Figure 9, the optimal radius and the cost at the optimal are
shown when the intensity of the process increases. It appears
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Fig. 9. The optimal radius when the receptions are taken into account.

that the optimal radius is smaller than in the other cases.
Contrarily to the case where receptions are not considered, the
optimal radio range does not converge to a positive limit. As
the intensity increases, the cost induced by receptions increases
and the radius is reduced.

g) Discussion: When the receptions are not considered,
the optimal cost converges as the intensity increases. The cost
is then minimal when there is an infinite number of nodes.
The path consists in a sequence of deterministic size of hops
of size R, on the line joining the source and the destination.
In the case where receptions are taken into account, the most
dense is the network, the highest is the cost of a transmission.
The optimal radius decreases with the intensity increasing and
tends to 0 as the intensity A tends to infinity. The cost is
smaller when there is a smaller number of nodes in the network
as, in this case, a high radio range can be chosen, leading to
a small number of receptions and a small number of hops to
the destination.

VII. THE INHOMOGENEOUS CASE

Both analytical results and simulations hold for nodes
distributed by a homogeneous point process. But, is there an
optimal radius when nodes are distributed in an inhomoge-
neous way? And, does the adaptive algorithm still work? We
cannot answer to these questions for general inhomogeneous
point processes as it depends on the density function of these
processes. Although, we can consider a particular inhomoge-
neous point process and show that, in this case, there is an
optimal radius and that our adaptive algorithm gives very good
results.

The point process is the following: we distribute a first
homogeneous point process and superpose several point pro-
cesses which model concentration areas. A sample of such a
process is illustrated in Figure 10.

We compute the cost function (without the receptions) for
two cases. The case where the radio range is fixed and the
same for all the nodes. We vary the radio range from 50 to
120. The second case corresponds to the adaptive algorithm.
The radio range is then a function of the number of neighbors
(within an initial radio range Range = 100 meters in our
simulations). The two curves are shown in Figure 11.

The cost with the adaptive algorithm is constant as the radio
range is computed by each nodes. When the radio range is the



Fig. 10. A sample of the inhomogeneous point process.
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same for all the nodes, we observe an optimal value which
is here approximately 85. But the most interesting result is
that the adaptive algorithm gives better results in terms of
energy consumption. We suppose that it is due to the fact
that in the inhomogeneous case, the adaptive algorithm adapts
to the particular concentration zones of the network. Each
node adapts its radius according to its number of neighbors.
The radius will be high when there are few nodes in the
neighborhood and smaller in high concentration areas. In the
case where R, is fixed for all the nodes, the optimal radius
found in Figure 11 is then a tradeoff between concentration
zones and zones with a lower number of node. This tradeoff
leads to a higher energy consumption.

We also consider the optimal cost among all the possible
paths. It is obtained with the same algorithm as in Section V-D.
We associate to each link a cost corresponding to the cost of a
transmission on the link and we apply the Dijkstra algorithm
on the full mesh. The difference between the global mini-
mum obtained with the Dijkstra algorithm and our adaptive
algorithm is less than 4%. Therefore, for the considered point
process, the benefit of reactive/proactive routing protocols does
not justify their use.

VIII. CONCLUSION

In this paper we have addressed the problem of evaluating
the radius minimizing the energy consumption during uni-
cast communications in MANET and sensor networks. We
concentrate only on cases where nodes of the network are
randomly distributed. We have showed that such an optimal
radius exists and that it depends on the intensity of the process.

We have proposed an analytical cost function which is showed
to be close to the cost function obtained by simulations. This
analytical function is then used in order to deduce the optimal
radius in a more convenient way than using simulations. In this
study, we consider the costs of both transmission and reception
operations. We have proposed an adaptive algorithm which
assumes that nodes can adapt their power in order to tune their
radio range. It appears that this adaptive algorithm minimizes
the cost function as well as the algorithm which uses the same
fixed radius for all nodes. It also turns out that this algorithm
is very efficient in a particular inhomogeneous process with
high concentration zones. This result must be generalized in
future works to general inhomogeneous processes.
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