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Abstract—Spectrum sensing in cognitive wireless networks
is important for Secondary nodes to avoid interference with
the Primaries. In this paper, considering a spectrum sensing
framework, we develop models for bounding interference levels
from Secondary network to the Primary nodes. First, we assume
that both networks are distributed according to Poisson point
processes. Subsequently, we consider a more practical model
which takes into account the medium access control regulations
and where the Secondary Poisson process is judiciously thinned
in two phases to avoid interference with the Secondary as well
as the Primary nodes. The resulting process will be a modified
version of the Matèrn point process. For both of these models, we
obtain bounds for CCDF of interference and present simulation
results which show the developed analytical bounds are quite
tight. Moreover, we use these bounds to find the operation regions
of the Secondary network such that the interference constraint
is satisfied on receiving Primary nodes for the two cases. We
then obtain theoretical results on the Primary and Secondary
throughput and find the throughput limits under interference
constraint.

I. INTRODUCTION

Dynamic spectrum access and management provides an
opportunity to use the limited radio frequency more efficiently.
This is irrefutably needed as there is a demand for higher
transmission rates and increased network throughput. While
this notion in general encompasses a variety of wireless
systems, one important scenario of interest is the concept in
which the unlicensed users are allowed to access the spectrum
licensed to the incumbent users on a non-interfering or limited
interference basis. The practical solution requires wireless
devices with cognitive radio capability to share the bandwidth
with Primary users.

Considerable research has been undertaken in the area
of dynamic spectrum access and management and cognitive
networks (see for example, [1], [2], and [3]). To implement
such systems, various approaches have been discussed that in-
volve issues ranging from spectrum opportunity identification
and exploitation to Media Access Control (MAC) protocol.
For example, reference [2] attempts to design a cognitive
MAC protocol, and optimal and suboptimal solutions are
proposed for dynamic spectrum access, assuming that users
can partially observe the instantaneous spectrum availability

and individually decide which channels to sense and access.
One important aspect is spectrum sensing, which enables the
Secondary nodes to be perceptive of the spectral activity of
the Primary users and thereby avoid and manage their level of
interference.

What gives rise to such concepts to become realistic is man-
aging the level of interference being harmful to the incumbent
users. Therefore, an understanding of the characteristics of
interference and its behavior, which is stochastic, is at the
core of the problem of determining the degree of bandwidth
efficiency and hence useful capacity to be used by secondaries.
This is precisely our focus here and we develop analytical
models and bounds for the level of interference in order to
determine the throughput. Published work in [4] considers
interference modeling in spectrum underlay cognitive wireless
networks and interference is approximated as sum of Normal
and Log-normal random variables.

We consider Secondary nodes to monitor individual trans-
missions from Primary nodes. Upon detecting no activities,
they can transmit. In this paper, using techniques from stochas-
tic geometry and the theory of point processes, we develop
models for bounding the CCDF (Complementary Cumulative
Distribution Function) of interference level from Secondary
nodes to a Primary node for Poisson point processes repre-
senting both Primary and Secondary nodes. Subsequently, we
consider a more practical model which takes into account the
medium access control regulations and where the Secondary
Poisson process is judiciously thinned in two phases to avoid
interference with the Secondary as well as the Primary nodes.
The resulting process will be a modified version of the Matèrn
point process. We model the CCDF of interference level from
Secondary nodes to a Primary node for this Matèrn point
process representing Secondary nodes. Throughput estimation
for Primary and Secondary nodes are of interest. In [5],
considering a simple Gaussian model, throughput in Primary
and Secondary networks are optimized by using the optimum
transmission probability. We use our obtained models to find
the operation regions of the Secondary network such that the
interference constraint is satisfied on receiving Primary nodes
for the two cases. We then obtain theoretical results on the
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Primary and Secondary throughput and find the throughput
limits under interference constraint.

In the remainder of this paper, we discuss the model used
and obtain analytical results for the bounds on CCDF of inter-
ference in section II. Numerical evaluations and simulations
are also provided to confirm the accuracy of the obtained
results. In section III, theoretical results are found for the
throughput considering the two models used in this paper.
Section IV, considers the throughput under the interference
constraint and section V concludes the paper.

II. MODEL

We focus on the interference level at location O (the origin
of the plane) and at a given time t. Interference is assumed
to be the sum of signal strengths generated by all the nodes
transmitting at time t. We use the following notations to denote
interference from Primary (IP ) and Secondary to Primary
networks (IS→P ):

IP =
+∞∑
i=1

PP ξil (‖Yi‖) and IS→P =
+∞∑
i=1

PSζil (‖Xi‖) (1)

where {ζi} and {ξi} are i.i.d. random variables representing
fading, l (‖.‖) represents deterministic path loss (a decreasing
function), PP and PS are the transmission powers from
Primaries and Secondaries, and (Yi)i∈IN (resp. (Xi)i∈IN ))
represent locations of the interfering nodes in the Primary
(resp. in the Secondary network). We assume that fading
is Rayleigh. Consequently, in the following we consider the
random variables {ζi} and {ξi} to be exponentially distributed
with parameters equal to 1.

It is obvious that according to equations (1), transmitters’
locations play a crucial role on interference. Interference distri-
bution strongly depends on the distribution of the simultaneous
transmitters, i.e., (Xi)i∈IN and (Yi)i∈IN distributions. We
consider two stationary point processes ΦP (ΦP = {Yi}i∈IN )
and ΦS (ΦS = (Xi)i∈IN ) describing locations of the Primary
and the Secondary nodes, respectively. Basically, a point
process consists of a random sequence of points distributed
in IRd (See [6] for a deeper presentation). In the two next
sub-sections, we present the different point processes used to
model transmitters’ locations.

A. Model 1: Poisson

We consider ΦP and ΦS to be two Poisson point processes
with intensity λP and λS , respectively. A sample of this model
is presented in Figure 1(a).

B. Model 2: a modified version of the Matèrn point process

In this model, we assume that a Secondary node listens to
the medium before transmitting. If it detects the transmission
of a frame from another Secondary node or a Primary node, it
delays its own transmission. We assume that a transmission
is detected by a node if the received signal strength from
another node is greater than a threshold γ. We also consider a
simplified deterministic path loss and assume that the received

signal strength is Pl(u) where u is the distance between the
two nodes and P is the transmission power. For a given
value of γ, there is therefore a maximal distance for which
a transmission is detected. As this distance depends on the
transmission power, we consider two different thresholds.
The distance hP for the Primary nodes is the solution of
γ = PP l(hP ), and hS for the Secondary nodes is the solution
of γ = PSl(hS). The Matèrn point process is suitable to model
the transmitters’ positions when using this medium access
protocol. Basically, it is formed by removing a subset of the
points of a Poisson point process in such a way that distances
between all the pair of remaining points are greater than a
predefined constant (hS or hP in our case). This model has
been already used to model such networks in [7] and [8].
We propose a modified version of the Matèrn point process
in order to take into account detection from both Primary
and Secondary nodes. We present below the classical Matèrn
point process, followed by a modified version which suits the
context of our problem.

a) Definition of Matèrn process: We consider a homoge-
neous Poisson point process Φ with intensity λ. We associate
with each point x a random variable m(x) independently
and uniformly distributed in [0, 1]. We perform a dependent
thinning of the Poisson process. We retain a point x if and only
if the points in the ball b(x, h) contains no points with marks
smaller than m(x). Formally, the points of the Matèrn is the
set {x ∈ Φ|m(x) < m(y)∀y ∈ Φ ∩ b(x, h)\x} . The intensity
λh of this process is known (see for instance [6] page 164)
and is given by:

λh =
1− exp

{
−λπh2

}
πh2

(2)

b) Our model: We use a modified version of the Matèrn
point process as the Primary nodes do not apply the same rule
to access the medium. The model is as follow:
• Simultaneous transmitters of the Primary network are

distributed according to a Poisson point process ΦP with
intensity λP .

• All the Secondary nodes are distributed according to a
Poisson point process ΦS with intensity λS .

• We consider a classical Matérn point process with ΦS
as the underlying Poisson process and distance threshold
hS . It corresponds to a first thinning of ΦS by taking into
account transmission from secondary nodes.

• The Matèrn point process is thinned a second time to
take into account the transmission from the Primaries. If
a point of the Matèrn is located at a distance less than
hP from a Primary transmitter, it is removed.

The intensity of the selected Secondary nodes denoted by
λ
′

S is then given by:

λ
′

S = exp
{
−λPπh2

P

}1− exp
{
−λSπh2

S

}
πh2

S

(3)

It is the Matèrn’s intensity multiplied by the probability for a
Primary node of lying at distance less than hP of a secondary.
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(a) Model 1. Primaries (Blue) and Secon-
daries (Green) are Poisson.

(b) Same sample as Figure 1(a). Primary
nodes are blue. Inhibition balls with ra-
dius hS are plotted around the Secondary
nodes. Secondary nodes which are going
to be removed (due to the two successive
thinning) are in red. The selected Sec-
ondary nodes are green.

(c) Model 2. We keep only those secondary
nodes which do not have Primaries within
their inhibition ball and satisfy the Matèrn
condition on the marks.

Fig. 1. Model 1 and Model 2. For model 2, we start from model 1 where both Primaries and Secondaries are Poisson. Then, we remove a Secondary if it
has a Primary in its ball, or if it does not have the highest mark compared to other secondary nodes within its ball. It is shown in Figure (b). The final point
processes considered in model 2 are shown in Figure (c).

A sample of this model is presented in Figure 1(a). The way
it is built from the two Poisson point processes is shown in
Figures 1(b) and 1(c).

III. COMPLEMENTARY CUMULATIVE DISTRIBUTION
FUNCTION OF INTERFERENCE

In cognitive radio networks, Secondary nodes must keep a
low interference level in order to ensure that performance of
the Primary network is not significantly deteriorated. Interfer-
ence from Secondary to Primary must satisfy the following
condition:

P (IS→P > η) < ε (4)

For the two models, we develop bounds and approximation
on this probability to determine the parameters for the Sec-
ondary network for which this condition is met. We consider
a node receiving a frame from a Primary node. This node is
assumed to be located at the origin of the plane.

A. Bound for Model 1 (Poisson)

First, we propose a lower bound on the Cumulative Dis-
tribution Function (cdf) of IS→P . We then deduce an upper
bound on the Complementary Cumulative Distribution Func-
tion (CCDF). We also propose an approximation easier to com-
pute than the bound. The interference cumulative distribution
function is defined as P (IS→P ≤ η).

Proposition 1. The lower bound is computed as follows:

P (IS→P ≤ η) ≥ 1− 2πλS

∫ +∞

0
exp

{
−

η

PS l(r)

}

× exp

{
− λS2π

∫ +∞

r

(
1−

1− exp
{
− η
PS

(
1

l(w)
− 1
l(r)

)}
1− l(w)

l(r)

)
wdw

}
rdr

(5)

The upper bound on the complementary cumulative distri-
bution function is then:

P (IS→P ≥ η) ≤ 2πλS

∫ +∞

0
exp

{
−

η

PS l(r)

}

× exp

{
− λS2π

∫ +∞

r

(
1−

1− exp
{
− η
PS

(
1

l(w)
− 1
l(r)

)}
1− l(w)

l(r)

)
wdw

}
rdr

(6)

The proof is given in appendix. The approximation used to
evaluate the CCDF is found by taking the second integral of
Equation (6) equal to 0 (it is a good approximation as this
integral is very small in practice):

P (IS→P ≥ η) ≤ 2πλS

∫ +∞

0
exp

{
−

η

PS l(r)

}
rdr (7)

B. Bound for model 2 (modified Matèrn)

We consider the modified version of the Matèrn point pro-
cess to model the Secondary nodes (presented in Section II-B).
We compute interference for a node located at the origin of
the plane O. This node receives a frame from a Primary node
located at a distance d. Without loss of generality, we assume
that this node is located at T = (d, 0). Therefore, there is
an inhibition ball b(T, hP ) centered at T and with radius hP
around this transmitter. From the intensity of the modified



4

Matèrn (see equation (3)), it is easy to find an upper bound on
the interference generated by the Secondary nodes. It is found
by using the Markov inequality:

P (IS→P > η) ≤ E [IS→P ]

η
(8)

Since the modified Matèrn is stationary, we can apply
Campbell formula (see [6] page 104) to compute mean in-
terference (with λ

′

S given by equation (3)):

E [IS→P ] = λ
′
S

∫
IR2\b(T,hP )

E[ζ]l (‖u‖) du (9)

This bound may be hard to compute, therefore we propose
instead an approximation to compute the CCDF. It has been
shown through a statistical study of interference [10], that
interference generated by a Matèrn point process follows a log-
normal distribution. In order to determine the two parameters
of this distribution, we use mean and variance of interference.
The mean interference is given by formula (9). The second
moment of interference generated by a Matèrn point process
has been computed in [9]. We obtain a variant of this second
moment for our model. Let us define Bu = b(u, hS) and ν(A)
the Lebesgue measure of A (area of A) for A ⊂ IR2. We have:

E
[
I2
S→P

]
=

1− exp {−λSπhS}
πh2

S

exp {−λPπhP }

×
∫
IR2\b(T,hP )

P 2
SE
[
ζ2] l(‖x‖)2dx

+
2P 2

S

πh2
S

∫
IR2\b(T,hP )

∫
IR2\(Bx∪b(T,hP ))

E[ζ1ζ2]

× E

[
1− exp {−λSν(Bx ∪By)}

ν(Bx ∪By)

−
exp

{
−λSπh2

S

}
− exp {−λSν(Bx ∪By)}

ν(Bx ∪By)− πh2
s

]
× exp {−λP ν(b(x, hP ) ∪ b(y, hP ))}l (‖x‖) l (‖y‖) dydx (10)

with E[ζ2] = 2 and E[ζ1ζ2] = 1. The approximation is then
IS→P  logNormal(m,σ2) where m and σ2 correspond to
mean and variance of this log-normal distribution, m is given
by Equation (9) and σ2 = E

[
I2
S→P

]
− m2 with E

[
I2
S→P

]
given by Equation (10).

C. Numerical evaluation and simulation

Figures 2(a) and 2(b) show the CCDF obtained by simu-
lations, the upper bound for model 1 given in Proposition 1
and the two approximations using Equation (7) for model 1
and the log-normal distribution for model 2. These simulations
are used to observe the accuracy of the bounds and to see
the difference between our approximation and real values.
The upper bound and the approximations are very close to
the simulations. It is worth noting that we have repeated
our simulations for different values of λS and they also
lead to very comparable results which are not shown here
due to lack of space. For the two models, the bound and
the approximations can be used to determine the values of

λS for which interference satisfies the constraint given by
Equation (4). For instance, in model 1, λS can be seen as
the result of a thinning of a Poisson point process(λS = pλ),
where λS is the intensity of the simultaneous transmitter and
λ the intensity of all the secondary nodes. If we consider that
the intensity of the Secondary nodes which want to transmit
to be λ and the access protocol to be ALOHA, we can tune
the parameter p to guarantee the condition on the CCDF.
For model 2, we can use the log-normal approximation to
determine values of hS satisfying Equation (4). We can then
deduce the threshold γ from the solution of γ = PSl(hS),
which should be used by the secondary nodes to detect a frame
transmission.

IV. THROUGHPUT ESTIMATION

In this Section, we focus on the obtainable throughput
by both primary and secondary networks. This throughput
is defined as the mean number of frames that are correctly
received per second in a unit square area. We estimate the
throughput as follows:

throughput = λ(1− FER)
1
T

(11)

where λ is the intensity of the simultaneous transmitters, T
is the mean time required to send a frame, and FER is the
Frame Error Rate. We compute this quantity for the two mod-
els that we have developed. For both models, Primary nodes
are distributed according to a Poisson point process. Secondary
nodes are also Poisson in the first model (Section IV-A), and
are distributed according to our modified Matèrn in the second
model (Section IV-B).

A. Model 1: Poisson

We consider the Frame Error Rate for a node which is
located at the origin and is receiving a frame from a primary
node at distance d. We use the definition and method devel-
oped in [7]. We use the following estimation for the Frame
Error Rate:

FER = P (SIR < θ) (12)

where SIR is the ratio of the power received from the
transmitter and the sum of the interference generated by the
Primary and Secondary nodes. In the proposition below, we
give the throughput for the Primary and Secondary networks.
The proof is given in [11].

Proposition 2. For model 1, throughputs of Primary and
Secondary networks are:
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(b) Complementary Cumulative Distribution Function of IS→P
for the modified Matèrn point process and the approximation
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Fig. 2. CCDF of IS→P obtained by simulation. IS→P =
∑+∞
i=1 PSζil(‖Xi‖). l(u) = min

((
β

4πu

)α
, 1
)

. β = 0.346 meters (wavelength). α = 3.
λS = 0.001. PS = 40mW. hS = 50 meters. hP = 50 meters. d = 0. ζi is exponentially distributed with parameter 1. We considered 1, 000, 000 samples
(it is why we do not need to show the confidence interval as it is negligeable).

throughputPrimary

= λP exp

{
−λS2π

∫ +∞

0

θPSl(r)

PP l(d) + θPSl(r)
rdr

}
× exp

{
−λP 2π

∫ +∞

0

θl(r)

l(d) + θl(r)
rdr

}
1

T
(13)

throughputSecondary

= λS exp

{
−λS2π

∫ +∞

0

θl(r)

l(d) + θl(r)
rdr

}
× exp

{
−λP 2π

∫ +∞

0

θPP l(r)

PSl(d) + θPP l(r)
rdr

}
1

T
(14)

The proof is given in appendix. It is worth noting that
interference at the receiver is the same when this receiver
belongs to the Primary or the Secondary network. When the
receiver is a Primary node, located at the origin, we assume
that there was a Primary transmitter at distance d from this
receiver. As the considered point process, conditional on the
presence of this transmitter, is Poisson, the other Primary
transmitters are still Poisson with the same intensity (this
result is given by the Slyvniack’s theorem ; see [6] page 121).
This transmitter is not taken into account in computation of
interference, the interfering nodes are then two Poisson point
processes with intensities λS and λP . This argument also holds
if we consider a transmission from a Secondary node. The
interference distribution at the origin is thus the same for both
Primary and Secondary networks.

B. Model 2: the modified Matèrn

In this Section, we compute the throughput for the second
model. First, we find the Frame Error Rate for the modified
Matèrn point process. We consider FER for a transmission

from a Primary. Let ξ an exponential r.v. with parameter 1,
we have:

FER = P (SIR < θ) = P
(
ξ <

θ(IP + IS→P )

PP l(d)

)
= 1− E

[
exp

{
−

θ

PP l(d)
IS→P

}
exp

{
−

θ

PP l(d)
IP

}]
(15)

It is not possible to compute this quantity analytically as the
distribution of IS→P is unknown. Moreover, IP and IS→P are
dependent. As an approximation, we assume that IS→P and
IP are independent. We will show through simulations that this
assumption does not bias the results. Using this assumption,
we get:

FER = 1− E
[
exp

{
−

θ

PP l(d)
IS→P

}]
E
[
exp

{
−

θ

PP l(d)
IP

}]
where we have:

E
[
exp

{
− θ

PP l(d)
IP

}]
= exp

{
−λP 2π

∫ +∞

0

θl(r)

l(d) + θl(r)
rdr

}
(16)

This quantity is computed in the proof of Proposition 2. We
have shown that IS→P can be approximated by a log-normal
distribution, so we use the Laplace transform of the log-
normal distribution to approximate E

[
exp

{
− θ
PP l(d)

IS→P

}]
.

In order to obtain the Frame Error Rate in the secondary
network, it suffices to substitute PP l(d) by PSl(d) in the
Formula (15). In Formula (18), the Laplace transform of IP
is taken in IR2\b(T, hp) instead of IR2 since we cannot have
a Primary lying at a distance less than hP from a Secondary
transmitter.

Proposition 3. Approximation of throughputs for Primary and
Secondary networks are:
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Fig. 3. Throughput for model 1 and 2. l(u) = min
((

β
4πu

)α
, 1
)

. β = 0.346 meters (wavelength). α = 3. λP = 0.00005. λS = 0.001. PS = PP =

40mW . θ = 10. The distance between receiver and transmitter is d = 10 meters. λS for model 1, hS and hP for model 2, are computed according to the
method described in Section III-A and III-B. We considered 5, 000 samples.

throughputPrimary = λP exp

{
−λP 2π

∫ +∞

0

θl(r)

l(d) + θl(r)
rdr

}
× E

[
exp

{
− θ

PP l(d)
IS→P

}]
1

T
(17)

throughputSecondary

= λ
′
S exp

{
−λP 2π

∫
IR2\b(T,hP )

θPP l(‖x‖)
PSl(d) + θPP l(‖x‖)

dx

}

× E
[
exp

{
− θ

PSl(d)
IS→S

}]
1

T
(18)

where λ
′

S is the intensity of the Matèrn point process given
by equation (3) and where IS→P is supposed to follow a
log-normal distribution with mean and variance given by
equations (9) and (10). IS→S follows the same log-normal
distribution as IS→P , but with diffrent parameters: in equa-
tions (9) and (10), b(T, hP ) must be replaced by b(T, hS) in
the first integral.

V. THROUGHPUT UNDER INTERFERENCE CONSTRAINT

For a given value of ε in Equation (4), we use the bound and
approximation developed in Section III to determine parame-
ters of the secondary network in such a way that transmissions
from Secondary nodes satisfy the condition on interference.
In Figures 3(a) and 3(b), we vary η of Equation (4) and
we observe the throughput under this constraint. We also
performed simulations varying ε rather than η. It led to the
same behavior. In these two figures, we can observe that
throughputs of the secondaries form a peak. This peak is due to
the following phenomena. When η increases, the intensity of
the simultaneous secondary transmitters increases, since the in-
terference constraint becomes looser. There are therefore more

transmitters and more frames received. When this intensity
becomes high, interference generated by Secondaries becomes
significant increasing the Frame Error Rate and decreasing
the throughput. Values of the throughput may be used to
tune parameters of the Secondaries. For model 1, Primary
throughput suffers from secondary transmissions. Indeed, Pri-
mary throughput decreases whatever the value of η is. For
model 2, Primary throughput is not impacted by secondary’
transmissions until η reaches a threshold (approximately η =
4.0e−8). The sensing mechanism guarantees that secondary
transmitters are not too close to Primaries. For greater values
of η, interference from Secondary’ transmissions penalizes
throughput in the Primary network. For this model, η (and
consequently γ, hS and hP ) should be chosen close to this
threshold. It offers a good throughput for Secondaries without
penalizing throughput of the Primaries.

VI. CONCLUSION

Obtaining the throughput for primary and secondary nodes
in a cognitive radio network is of considerable interest.
However, in order to obtain the throughput, it would be
necessary to meet the interference constraint from secondary
nodes to primary nodes. In addition, the interference level
amongst primary nodes influences the throughput. Therefore,
it becomes necessary to model the interference level for both
primary and secondary nodes and obtain the region of opera-
tion with respect to acceptable interference. For this purpose,
we first obtain bounds for the CCDF of interference level
from secondary nodes to a primary node for Poisson point
processes representing both primary and secondary nodes.
In addition we model the CCDF of Secondary interference
when secondary nodes are distributed according to a modified
version of Mat̀ern point process which models the secondary
transmitters by taking into account the medium access regu-
lations. Subsequently, by finding the operation region of the
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secondary network that satisfies the interference constraint,
analytical results are found for the throughput limits in the
primary and secondary networks.
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APPENDIX

Proof: Proof of Proposition 1
The lower bound is computed as follows:

P (IS→P ≤ η) = P
(
PSζ1l (‖X1‖) ≤ η −

+∞∑
i=2

PSζil (‖Xi‖)
)

(19)

= P
(
ζ1 ≤

η −
∑+∞
i=2 PSζil (‖Xi‖)
PSl (‖X1‖)

)
(20)

= E
[(

1− exp

{
−
η −

∑+∞
i=2 PSζil (‖Xi‖)
PSl (‖X1‖)

})

×1l
η−

∑+∞
i=2 PSζil(‖Xi‖)>0

]
(21)

We set,

IkS→P =

+∞∑
i=k

PSζil (‖Xi‖) (22)

P (IS→P ≤ η)

= P
(
I
2
S→P ≤ η

)
− E

[
exp

{
−
η − I2S→P
PSl (‖X1‖)

}
1l
I2
S→P<η

]

= P
(
ζ2 ≤

η − I3S→P
PSl (‖X2‖)

)
− E

[
exp

{
−
η − I2S→P
PSl (‖X1‖)

}
1l
I2
S→P<η

]

= P
(
I
3
S→P ≤ η

)
−

2∑
k=1

E
[
exp

{
−
η − Ik+1

S→P
PSl (‖Xk‖)

}
1l
I
k+1
S→P<η

]
(23)

By recurrence, we obtain for n > 1:

P (IS→P ≤ η)

= P
(
I
n
S→P ≤ η

)
−
n−1∑
k=1

E
[
exp

{
−
η − Ik+1

S→P
PSl (‖Xk‖)

}
1l
I
k+1
S→P<η

]
(24)

and when n→ +∞,

P (IS→P ≤ η)

=1−
+∞∑
k=1

E
[
exp

{
− η − Ik+1

S→P
PSl (‖Xk‖)

}
1l
Ik+1
S→P<η

]
(25)

We apply the Campbell formula [6]:

P (IS→P ≤ η)

= 1− λS
∫
IR2

E0

[
exp

{
−
η − IxS→P
PS l (‖x‖)

}
1lIx
S→P<η

]
dx (26)

where E0[.] is the expectation under Palm measure [6], [?],
and

IxS→P =

+∞∑
Xi∈IR2\b(−x,‖x‖)

PSζil (‖Xi‖) (27)

where b(−x, ‖x‖) is the ball centered at −x with radius
‖x‖ and A is the closed set of A.

As the Poisson point process is stationary, we can use the
following definition instead:

IxS→P =

+∞∑
Xi∈IR2\b(0,‖x‖)

PSζil (‖Xi‖) (28)

Moreover, from the Slivnyak’s theorem [6], we have:

E0

[
exp

{
−η − I

x
S→P

PSl (‖x‖)

}
1lIx

S→P<η

]
= exp

{
− η

PSl (‖x‖)

}
E
[
exp

{
IxS→P

PSl (‖x‖)

}
1lIx

S→P<η

]
The bound turns out as follows:

E
[
exp

{
IxS→P

PS l (‖x‖)

}
1lIx
S→P<η

]
= E

[
+∞∏
i=1

(
exp

{
ζiPS l (‖Xi‖)
PS l (‖x‖)

}
1l‖Xi‖>‖x‖ + 1l‖Xi‖≤‖x‖

)
1lIx
S→P<η

]

≤ E
[
+∞∏
i=1

(
exp

{
ζil (‖Xi‖)
l (‖x‖)

}
1l‖Xi‖>‖x‖1lPSζil(‖Xi‖)<η + 1l‖Xi‖≤‖x‖

)]
We use the p.g.f.l. of the Poisson point process defined as:

E

[
n∏
i=1

vx(Xi)

]
= exp

{
−λS

∫
IR2

(1− vx(u)) du
}

with

vx(u) =

(
exp

{
ζl (‖u‖)
l (‖x‖)

}
1l‖u‖>‖x‖1lPSζl(‖u‖)<η + 1l‖u‖≤‖x‖

)
and we obtain:

E
[
exp

{
IxS→P

PSl (‖x‖)

}
1lIx
S→P<η

]
≤ exp

{
− λS

∫
IR2

(
1

− E
[(

exp

{
ζl (‖u‖)
l (‖x‖)

}
1l‖u‖>‖x‖1lPSζl(‖u‖)<η + 1l‖u‖≤‖x‖

)] )
du

}
= exp

{
− λS

∫
IR2

(
1− 1l‖u‖≤‖x‖

)
− E

[
exp

{
ζl (‖u‖)
l (‖x‖)

}
1lPSζl(‖u‖)<η

]
1l‖u‖>‖x‖du

}
= exp

{
− λS

∫
‖u‖>‖x‖

(
1− E

[
exp

{
ζl (‖u‖)
l (‖x‖)

}
1lPSζl(‖u‖)<η

] )
du

}
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We obtain,

E
[
exp

{
ζl (‖u‖)
l (‖x‖)

}
1lPSζl(‖u‖)<η

]
=

1− exp
{
− η
PS

(
1

l(‖u‖) −
1

l(‖x‖)

)}
1− l(‖u‖)

l(‖x‖)

Putting all of these together and changing for polar coordi-
nates, we obtain:

P (IS→P ≤ η) ≥ 1− 2πλS

∫ +∞

0
exp

{
−

η

PS l(r)

}

× exp

{
− λS2π

∫ +∞

r

(
1−

1− exp
{
− η
PS

(
1

l(w)
− 1
l(r)

)}
1− l(w)

l(r)

)
wdw

}
rdr

(29)

The upper bound on the complementary cumulative distri-
bution function is then:

P (IS→P ≥ η) ≤ 2πλS

∫ +∞

0
exp

{
−

η

PS l(r)

}

× exp

{
− λS2π

∫ +∞

r

(
1−

1− exp
{
− η
PS

(
1

l(w)
− 1
l(r)

)}
1− l(w)

l(r)

)
wdw

}
rdr

Proof: Proof of Proposition 2
First, we compute the Frame Error Rate for a node at the

origin and receiving a frame from a primary node at distance
d. We use the definition and method developped in [7]:

FER = P (SIR < θ) (30)

The SIR is the ratio of the power received from the
transmitter and the sum of the interference generated by the
Primary and Secondary nodes. For a transmission from a
Primary, we get:

FER = P
(

ξPP l(d)

IS→P + IP
< θ

)
= P

(
ξ <

θ

PP l(d)
(IS→P + IP )

)
(31)

= 1− E
[
exp

{
− θ

PP l(d)
(IS→P + IP )

}]
(32)

As IS→P and IP are independent we get

FER = 1− E
[
exp

{
−

θ

PP l(d)
IS→P

}]
E
[
exp

{
−

θ

PP l(d)
IP

}]
(33)

E
[
exp

{
− θ

PP l(d)
IP

}]
= E

[
exp

{
− θ

PP l(d)

+∞∑
i=1

PP ξil (‖Yi‖)

}]
(34)

= E

[
n∏
i=1

exp

{
− θ

PP l(d)
PP ξil (‖Yi‖)

}]
(35)

We use the p.g.f.l. of the Poisson point process, we get:

E
[
exp

{
−

θ

PP l(d)
IP

}]
= exp

{
−λP

∫
IR2

(
1− E

[
exp

{
−θ

PP l(d)
PP ξl (‖y‖)

}])
dy

}
= exp

{
−λP 2π

∫ +∞

0

(
1− E

[
exp

{
−θ

PP l(d)
PP ξl(r)

}])
rdr

}
= exp

{
−λP 2π

∫ +∞

0

θl(r)

l(d) + θl(r)
rdr

}
We use the same approach to compute

E
[
exp

{
− θ
PP l(d)

IS→P

}]
:

E
[
exp

{
−

θ

PP l(d)
IS→P

}]
= exp

{
−λS2π

∫ +∞

0

θPSl(r)

PP l(d) + θPSl(r)
rdr

}
Throughputs for Primary and Secondary networks are then:

throughputPrimary

= λP exp

{
−λS2π

∫ +∞

0

θPSl(r)

PP l(d) + θPSl(r)
rdr

}
× exp

{
−λP 2π

∫ +∞

0

θl(r)

l(d) + θl(r)
rdr

}
1

T
(36)

throughputSecondary

= λS exp

{
−λS2π

∫ +∞

0

θl(r)

l(d) + θl(r)
rdr

}
× exp

{
−λP 2π

∫ +∞

0

θPP l(r)

PSl(d) + θPP l(r)
rdr

}
1

T
(37)


