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SUMMARY

This paper addresses the analytical evaluation of broadcast protocols in VANET. We focus on the most popular
broadcast algorithm, which consists in the current emitter selecting the furthest receiver as the next forwarder. We
propose a general framework based on point process to evaluate this protocol. The radio environment is modelled by
a generic Frame Error Rate (FER) function. It enables us, through the same model, to assess the performances for
different radio environments or radio technologies. We derive simple formulas for different quantities relative to the
performance of the broadcast protocol: time to propagate the message, emitters’ intensity, mean number of receptions
for the same message, etc. Results based on the analytical model are compared to simulations using realistic vehicle
traffic in order to determine the contexts for which the analytical model is relevant. Copyright c© 2000 John Wiley
& Sons, Ltd.
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1. Introduction

Vehicular Ad-hoc NETworks (VANETs) are a special kind of Mobile Ad-hoc NETwork (MANET). It
assumes that all, or a subset of the vehicles is equipped with radio devices, enabling communications
between them. Specific technologies like IEEE 802.11p [12] (also referred to as Wireless Access in Vehicular
Environments, WAVE) are dedicated to enabling these vehicle-to-vehicle radio communications. One of
the major applications of VANET aims to increase vehicle safety and driver convenience. These kind of
applications rely on the dissemination of warning and control information [18]. This allows a vehicle to
obtain information about accidents, congestion and the surface conditions of roads from other vehicles. The
performances of the broadcast algorithm used to disseminate the messages in the VANET are thus crucial.
Due to the particular topology, the particular mobility of the vehicles and the special requirements of the
applications, broadcast algorithms in VANET are different from the ones used for the classical MANET.
Therefore, the broadcast protocols must be evaluated in this particular environment. Some analytical works
exist on the performance evaluation of VANET, describing their structural properties such as connectivity,
route lifetime and capacity [19, 29, 17, 20]. But there are only a few analytical studies about the performance
of broadcast protocols. Indeed, most of the studies use simulations ([7, 26, 2] to cite a few). In [28], the effects
of broadcast flooding and several schemes to reduce redundant broadcasts in Ad-Hoc networks are analyzed.
[4] proposes a model to assess the overhead, coverage and latency characteristics of a particular broadcast
algorithm for VANET. The model uses simplistic radio assumptions, where the radio range of the nodes is
fixed and the same for all the nodes. Moreover, the algorithm considered is very simple and not realistic
in the context of VANET. The article closely to this paper is [9], where the authors develop an analytical
framework to study broadcast performances and derive several metrics relevant to the dissemination of safety
messages. There are two limitations with their model: a discrete space is used to represent vehicle locations,
and they suppose an ideal radio environment with a fixed radio range.
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1.1. Contributions

This paper addresses the analytical evaluation of a broadcast protocol in VANET. We shall focus on the
most popular broadcast algorithm, presented in detail in Section 2. The analytical results are then compared
to realistic traffic patterns. The aim is to estimate the impact of the assumptions made in the analytical
model on real performances. The contributions of this paper are as follows:

• We propose a general framework based on point process to evaluate the broadcast protocol. Our
approach is based on the theory of point processes and Palm Calculus [25, 5].
• The radio environment is modelled by a generic Frame Error Rate (FER) function (it gives the

probability of losing a frame with respect to the distance). We can thus model very different radio
propagation environments or radio technologies.
• We derive formulae and bounds for different quantities relative to the performance of the broadcast

protocol: time to propagate the message, emitters’ intensity, mean number of receptions of the same
message, etc.
• We use a micro-simulator, generating realistic traffic under different traffic densities, to determine the

contexts for which the analytical model is pertinent.

1.2. Organization

The remainder of this paper is organized as follows. Section 2 overviews broadcast protocols in VANET and
presents the one evaluated in this paper. In Section 3, we analyze the proposed broadcast scheme. Section 4
presents the different radio models and parameters used in the numerical evaluations. The analytical results
are compared to simulations (based on the same assumptions as the theoretical model) in Section 5. In
Section 6, we present the micro-simulator and compare the analytical results to simulations obtained with
realistic traffic. Finally, concluding remarks and comments are given in Section 7.

2. Broadcast protocols

A broadcast protocol aims to send the same message to all the nodes in the network. The simplest broadcast
mechanism consists in a node broadcasting the message after the first reception. This mechanism has the
advantage of being simple, but it creates the famous storm problem [27], also named broadcast flooding, as
it generates a great number of retransmissions and receptions. The goal of an efficient broadcast protocol is
to minimize the number of transmissions while maintaining a high probability of reception.

In [27], broadcast protocols are categorized with respect to the criteria used by a potential forwarder to
cancel its own retransmission: distance to the emitter, number of receptions, the result of a random variable,
node locations, etc. The latter supposes that the nodes are capable of knowing their geographical locations,
via GPS for instance. A node forwards the broadcast message when the additional coverage is greater than
a predefined threshold. This approach is shown to be the most efficient, as it eliminates the most redundant
rebroadcasts without compromising reachability. This algorithm has been improved and adapted in the
context of VANET. Most of the broadcast protocols favour the furthest nodes from the previous emitter
as the next forwarder. It maximizes the coverage area and minimizes the number of redundant receptions.
For instance, in [3, 9], a vehicle retransmits the message according to a certain probability. This probability
increases with the distance from the emitter and thus farther nodes are likely to be selected as forwarders.

In [2, 8, 16], the furthest receiver is systematically the next forwarder, but the way it is selected differs
from one protocol to another. In [8], each node is supposed to know its neighbourhood (IDs and locations of
the vehicles in its radio range). A forwarder selects in its neighbourhood the furthest node in the broadcast
direction. A field in the message indicates the ID of the node responsible for the next retransmissions. In [2]
and [16], when receiving a frame, a node triggers a retransmission timer (a blackburst in [16]) with a duration
decreasing with the distance from the emitter. As a result, the furthest node retransmits first. Upon receiving
this broadcast, the other nodes cancel their own transmission.

In this paper, we consider an example of this approach. The algorithm is as follows. We study the
propagation of the message in a given direction (upstream with regard to the flow of vehicles). When a
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node at y (y represents both the node and its location) receives for the first time the broadcast message from
a node x with x < y, it triggers a timer. The initial value of the timer, denoted timer(|y − x|), decreases
with the distance from the emitter (|y − x|). If the node y does not receive the same message from a node z
with z > y at the timer expiration, it retransmits the message, otherwise it cancels its transmission. There
is no acknowledgement from the receivers; therefore, the message dissemination can stop.

3. Analytical model

To model vehicle locations, we use a point process in IR. Basically, it consists of a sequence of points randomly
distributed on the line, each point representing the location of a vehicle. For convenience sake, we shall use
the same notation to represent a vehicle and its location. We consider a point process distributed on the
line rather than in the plane (IR2) as the radio scopes of the vehicles are really greater than the road width.
The point process can model one or several lanes, for a highway for instance. The considered point process
is then the superposition of a set of independent point processes, one for each lane. Our study applies to
cases where all, or a proportion l (0 < l ≤ 1), of the vehicles are equipped with radio devices. As the
considered underlying process, modelling all the vehicles, is Poisson the thinning of the process representing
the equipped vehicles is also Poisson. To take into account only a proportion l of equipped vehicles, we can
simply to multiply the intensity of the process by l in all the formulae of the analytical study.

A transmission from a vehicle is properly received by a vehicle at distance d with probability p(d). The
function p(.) is the Frame Error Rate (FER) with respect to the distance. This function takes its value in
[0, 1], and is supposed to be continuous and increasing with p(0) = 0 and

∫ +∞
0

(1 − p(x))dx < +∞. We
use the same function p(.) for the transmissions from all the vehicles and we suppose that receptions are
independent between the vehicles.

We consider two different models. The first one allows us to assess the distance covered by the message. It
is defined as the distance between the node which initiates the broadcast and the furthest node which receives
it. The second one is used to estimate the intensity of the forwarders and the mean number of receptions
per node. In this model, we suppose that forwarders form a stationary point process (their distribution
does not change with distance). With this assumption, the cited quantities can be computed for a typical
point, without taking into account the distance to the initial emitter. We also use this model to compute
the delivery delay of the message.

3.1. First model: distance covered by the message.

Figure 1. Example of a broadcast scenario.

Vehicle locations are modelled by a Poisson point process Φ with intensity λ (the mean number of
nodes/vehicles per kilometer). Even if the Poisson point process is often considered to model vehicle locations,
this assumption is only ascertained for low vehicle density [22, 21, 13, 24]. We discuss the relevance of the
Poisson process for high intensities in detail in Section 6. In order to estimate the total distance covered by
the message, we look at the points (the vehicles) involved in the progression of the message. According to the
broadcast protocol, we can distinguish two kinds of emitters. This distinction is easier to understand with an
example. The example is depicted in Figure 1. The node which initiates the message is the node 0. This first
broadcast is received by nodes 1, 2, 3 and 4. Node 4, as it is the furthest from 0, is the first node to retransmit

3



the message. The message is received by nodes 1, 2, 5, 6, 7 and 8. So, node 8 retransmits (not shown in the
figure). Node 3 did not receive the retransmission from 4, therefore it retransmits the message (not shown in
the figure) at the expiration of its timer. We can thus distinguish a first set of emitters contributing to the
fast progression of the message (nodes 4 and 8 in our example), and the emitters which retransmit because
they did not receive the message from nodes upstream (node 3 in our example). The first set of emitters is
denoted (Ti)i≥0 in this model.

Let T0 = 0 be the location of the node which initiates the broadcast. We denote by T1, the furthest
node which received the message from T0. As the furthest receiver is the next receiver, T1 will retransmit
the message. The furthest node which received the message from T1 is denoted T2, and so on. The sequence
(Ti)i≥0 is thus defined recursively. Ti is then formally defined as the furthest node which received the message
from Ti−1. The sequence (Ti)i≥0 corresponds to the fastest progression of the message. In a perfect world
where vehicles have a perfect radio range R (p(u) = 0 for u < R and p(u) = 1 otherwise), the nodes (Ti)i ≥ 0
are the only emitters. Indeed, a node of Φ which does not belong to (Ti) will receive the message from the
downstream node Ti, and the retransmission from Ti+1 will cancel its own transmission.

After the transmission from T0, nodes which have received the messages (from T0) are the results of an
independent thinning of Φ (a subset of Φ, where each point is selected independently of the others). The
point process Φ is then split into two independent processes denoted ΦT0 and Φ

′

T0
. ΦT0 represents the points

of Φ which receive the message from T0, Φ
′

T0
represents the other points. As the probability of selecting a

point depends on its distance from the origin, the intensity of these two point processes is inhomogeneous,
but, thanks to the properties of the Poisson point processes, they are still Poisson (an independent thinning
of a Poisson process is Poisson). An inhomogeneous Poisson point process is characterized by its intensity
measure. This measures the mean number of points as a function of the considered interval. The intensity
measure of the process ΦT0 is given as:

Λ(A) = λ

∫
A

(1− p(r)) dr

for A ⊂ IR+.
T1 is less than x (x ∈ IR+) if and only if the inhomogeneous process is empty in [x,+∞). Therefore, the

cumulative distribution function of T1 is:

P (T1 ≤ x) = e−Λ((x,+∞)) (1)

The probability density function (pdf ) of T1 is then given by:

fT1(x) = λ(1− p(x))e−Λ((x,+∞)) + qδ0 (2)

The pdf is composed of a continuous term and an atom at 0 (δ. is the Dirac measure) corresponding to the
event that there is no receiver: q = e−Λ((0,+∞)) .

The probability of getting a second forwarder (T2 > 0) is different to (1 − q). Indeed, after the first hop,
there is likely to be a gap after T1. For instance, with the Boolean model where the radio range R is fixed,
there are no Φ points in [T1, T1 +R].

For the second hop T2 − T1, we consider the points which do not receive the message from T0 (i.e. the
points of Φ

′

T0
) but from T1. It results in a thinning of Φ

′

T0
. Each point x in Φ

′

T0
is selected with probability

p(|x−T1|). Since T1 is independent of Φ
′

T0
, conditionally to the random variable T1, the selected points form

an inhomogeneous Poisson process with intensity measure λ
∫
.
p(x)(1− p(|x− T1|))dx. The probability that

there is no point x with x > T1 which receives the message from T1 given that T1 > 0 is:

q2 = E
[
e
−λ

∫ +∞
T1

p(x)(1−p(x−T1))dx|T1 > 0
]

= E
[
e−λ

∫ +∞
0 p(x+T1)(1−p(x))dx|T1 > 0

]
We can also compute the complementary cumulative distribution function of T2 − T1 given that T1 > 0:

P (T2 − T1 > x|T1 > 0) = 1− E
[
e−λ

∫ +∞
x p(u+T1)(1−p(u))du|T1 > 0

]
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This quantity can easily be computed with the knowledge of the pdf of T1 conditionally to T1 > 0. This pdf is
given in the next subection by formula (4).

If we suppose that the distributions of (Ti+1−Ti)i≥0 are independently and identically distributed with the
same distribution as T2−T1, the probability of the message stopping after k hops is then (1−q)(1−q2)k−1q2.
We consider the distribution of T2−T1 rather than T1−T0 for the hop lengths because it takes into account
the gap created after each hop. The mean distance covered by the message, denoted E[D], is then:

E[D] = (1− q)a+
a2(1− q)(1− q2)

q2
(3)

where a = E[T1|T1 > 0] and a2 = E[T2 − T1|T2 − T1 > 0, T1 > 0].
Of course, the assumption of the independence of the sequence (Ti+1−Ti)i≥0 does not hold. Nevertheless,

this assumption drastically simplifies the computations and does not significantly bias the numerical
evaluations, as will be shown in Section 5.

It is worth noting, that in the case of the Boolean model where R can be randomly distributed, there are
rigorous analytical results about the mean value of D, or even about its distribution [14, 29, 30]. By analogy
with queuing theory, D corresponds to the busy period of a M/GI/ +∞ queue. But our model is more
general, as we use a generic FER function rather than a random radio range.

3.2. The second model: number of receptions and delivery delay.

For the other quantities (mean number of receptions per vehicle, mean delay, etc.), we build a stationary
point process to model the sequence of vehicles which forwards the message (the points Ti in the previous
paragraph). It allows us to compute these quantities (especially the mean number of receptions) for a typical
point independently of the distance from the initial transmitter. The results obtained are thus pertinent for
vehicles some hops away (at least one hop) from the vehicle which initiates the broadcast. In the numerical
evaluations, these quantities rapidly converge to the analytical results as the distance to the initial transmitter
increases. Also, the stationarity of the point process allows us to apply Palm calculus. It offers a mathematical
framework to compute esperance of point process functionals conditionally to the presence of a point (of
this point process) at a given location. This is an intuitive definition. A more formal introduction of Palm
calculus can be found in [5, 25, 10]. In our case, it is particularly useful. As an example, when computing the
mean number of receptions for a point, we will suppose that this point is at a given location. This assumption
impacts the distribution of the point process. For instance, the distribution of the distance between location
x and the location of the previous forwarder is not the same depending on whether there is a point/vehicle
at x or not. The probability measure is thus different under Palm measure. The computation of esperances
under Palm measure is denoted ExN [.], meaning (intuitively) that we compute this esperance conditionally
to the presence of a point of N at location x.

We consider a new point process built from the previous point process (Ti)i≥0. In the first model, we
considered that the sequence Ti+1 − Ti could stop. The idea here is to consider a sequence (Si) of points
distributed in IR such that Si+1 − Si is almost surely positive. The distribution of Si+1 − Si is obtained by
normalization of the pdf of T1 − T0:

fSi+1−Si
(x) =

1
1− q

λ(1− p(x))e−Λ([x,+∞)) (4)

This process, denoted ΦS , is thus stationary with intensity λS = 1
E[Si+1−Si]

. A second stationary point
process ΦO models the other nodes. It is an independent Poisson point process with intensity λO = λ− λS .
The global process describing all the nodes is thus a stationary point process Φ = ΦS ∪ΦO with intensity λ.

3.2.1. Intensity of the emitters The emitters can be divided in two sets. The first set corresponds to the
emitters of ΦS for which we have already computed the intensity (λS). The second set are the emitters of ΦO,
which correspond to the nodes that do not received the retransmission from the forwarders Si downstream
and thus rebroadcast the message (node 3 in Figure 1 for instance).
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Let us suppose that the emitters of ΦO forms a stationary point process. Its intensity, defined as the
mean number of emitters of ΦO in [0, 1], is given by λOE0

ΦO
[1l0is an emitter], where 1lcondition is the indicator

function equals 1 if condition is true and 0 otherwise. E0
ΦO

[1l0is an emitter] is the probability that the typical
point of ΦO located at 0 is an emitter. If we apply the Neveu exchange formula (see [5] page 21 formula
(1.3.4) for instance), we get:

λOE0
ΦO

[1l0 is an emitter] = λSE0
ΦS

 ∑
xi∈ΦO∩[0,S1]

1lxi is an emitter

 (5)

The Neveu exchange formula expresses the relationship between two Palm measures. Intuitively,
formula (5) says that the intensity of the emitters in ΦO is equal to the mean number of emitters of ΦO
between two typical points of ΦS (one located at S0 = 0 and the other one at S1) multiplied by the intensity
of ΦS . For convenience, we set

A = E0
ΦS

 ∑
xi∈ΦO∩[0,S1]

1lxi is an emitter


i.e. the mean number of emitters of Φ0 in [0, S1] under Palm expectation. The global intensity of emitters
λE is then:

λE = λSA+ λS

Therefore, the problem boils down to the computation of A. Let x be a typical point of ΦO in [S0 = 0, S1].
We suppose that x is an emitter if and only if:

• it receives the message from S0,
• it does not receive the message from S1,
• it does not receive the message from all the emitters of ΦO in [x, S1].

The first emitter of ΦO in [S0, S1], denoted X1, is the closest point from S1 with S0 < X1 < S1, which
receives the message from S0 but not from S1. We set X1 = 0 if there is no such point. Given S1, the points
which receive the message from S0 and not from S1 form an inhomogeneous Poisson point process with
density measure (1 − p(x))p(S1 − x) with x ∈ [S0, S1]. The computation of the pdf of X1 given S1 is then
straightforward:

fX1|S1(x) = (λ− λS)(1− p(x))p(S1 − x)e−(λ−λS)
∫ S1

x
(1−p(u))p(S1−u)du

+
(

1− e−(λ−λS)
∫ S1
0 (1−p(u))p(S1−u)du

)
δ0 (6)

where 1− e−(λ−λS)
∫ S1
0 (1−p(u))p(S1−u)du is the probability of having no emitter (X1 = 0).

The second emitter X2 of ΦO (in [S0, X1)) is the closest point from X1 with S0 < X2 < X1 that receives
the message from S0, but not from S1 and X1. Xi is then the closest point of Xi−1 such that S0 < Xi < Xi−1

which receives the message from S0, but not from the set of points {S1, X1, .., Xi−1}. The distribution of Xi

becomes quickly intractable as i increases. Indeed, it depends on the random variables {S1, X1, .., Xi−1}. As
a result, we build upper and lower bounds on A, leading to bounds on λE . We also propose an empirical
approximation of this quantity. Due to lack of space, the proof is presented in appendix 7.

Proposition 1. A first upper bound on A is:

Aupper =
+∞∑
i=1

(
1− E0

ΦS

[
e−(λ−λS)

∫ S1
0 (1−p(x))p(S1−x)idx

])
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A sharper upper bound is given by:

Aupper2 =
(

1− E0
ΦS

[
e−(λ−λS)

∫ S1
0 (1−p(x))p(S1−x)dx

])
+

+∞∑
i=2

(
1− E0

ΦS

[
e−(λ−λS)

∫ X1
0 (1−p(x))p(S1−x)p(X1−x)i−1dx

])
A straight lower bound consists in taking only the emitters in ΦS. In other words, we consider A = 0.
The approximation is built as follows. Given the sequence (xj)j=0,..,i−1 with x0 = S1 and 0 < xi−1 < .. <

x2 < x1 < x0, we compute xi as a solution of the equation:

∫ xi−1

xi

(1− p(x))
i−1∏
j=0

p(xj − x)dx = 1

We stop when xi < 0. Let I be the index of the smallest xi such that xi > 0. The mean number of emitters
is then estimated as:

Aapprox = I +
∫ xI

0

(1− p(x))
I∏
j=0

p(xj − x)dx

Remark 1. The approximation consists in estimating the emitters’ location in an iterative manner. The
location of the first emitter x1 is set in such a way that the mean number of points in [x1, S1) which received
the message from S0 = 0 but not from S1 is exactly 1. The location of the second emitter x2 is set in such
a way that the mean number of points in [x2, x1) which receive the message from S0 but not from S1 and x1

is 1, and so on. We stop when we reach 0 and count the number of ”xi” that we set.

3.2.2. Mean number of receptions Let ΦE be the stationary point process of intensity λE modelling all the
emitters, the mean number of receptions is computed for a point added at 0:

R = E

[ ∑
xi∈ΦE

1l0 receives the message from xi

]

= λE

∫
IR

(1− p(|x|))dx

The second equality is obtained by applying the refined Campbell formula (for more on this formula,
see [25] page 119). Bounds on this quantity are directly deduced from the bounds on λE .

3.2.3. Delay We estimate the delivery delay of the message for a node located at x (x > 0), and at distance
x from the node which initiates the broadcast. We suppose that the message has been initially broadcasted
by a node located at 0 at time t = 0. Let dS be the mean delay of a retransmission, i.e. the mean delay
between the reception and the retransmission for a node of ΦS . We get,

dS = E0
ΦS

[timer(S1)] + T

where timer(.) is the function representing the duration of the timer with regard to the distance. T is a
constant representing the average time to send the message, i.e. time to access the medium, send the frame,
etc. The value of dS is known since the distribution of S1 under Palm expectation is given by formula (4).
As for the intensity of the emitters, we propose in the next proposition a lower and an upper bound on this
delay. The way they are built is given in the appendix.

Proposition 2. We propose dmin as a lower bound on the delay at x (x > 0), with:

dmin = dS
(
max(λSx− 1, 0) + E0

ΦO

[
p(S−(0))

])
We propose dmax as an upper bound on the delay at x, with:
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dmax = dS
(
λSx+ E0

ΦO

[
p(S−(0))

])
+ (d0 − dS) E0

ΦO

[
p(S−(0))p(S+(0))

]
An approximation on the delay is given by:

dapprox = dS
(
max(λSx− 0.5, 0) + E0

ΦO

[
p(S−(0))

])
+ (d0 − dS) E0

ΦO

[
p(S−(0))p(S+(0))

]
with

E0
ΦO

[
p(S−(0))

]
= λSE0

ΦS

[∫ S1

0

p(x)dx

]

= λS

∫ +∞

0

∫ y

0

p(x)dxfS1(y)dy

and

E0
ΦO

[
p(S−(0))p(S+(0)

]
= λSE0

ΦS

[∫ S1

0

p(x)p(S1 − x)dx

]

= λS

∫ +∞

0

∫ y

0

p(x)p(y − x)dxfS1(y)dy

4. Radio models and retransmission timer.

Simulation Parameters Numerical values Simulation parameters Numerical values
Frequency 5.9GHz Number of samples (simulation) 60000
Transmission Rate 3 Mb/s Size of the observation window from 0 to 25 km
Antenna heights 1.5 meters Message length 100 bytes

Table I. Parameters.
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Figure 2. FER functions and distance covered by the message.

4.1. Radio models: Frame Error Rate

We consider two different FER functions, which are presented in the following paragraphs. They are set
according to the IEEE 802.11p standard.
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2RM model In order to set a realistic function p(.), we use the FER model developed in [6]. In this paper,
the authors presented a measurement-based model of the frame error process in a rural environment. The
proposed model is based on the two-ray path loss model, hereafter referred to as 2RM. The model takes into
account wavelength of the 802.11p standard, heights, distances and gains of the two antennas (emitter and
receiver), frame length, etc. Using the default parameters of the 802.11p standard, we obtain the FER plot
in Figure 2(a). Parameters are listed in table I. The radio range obtained with this model corresponds to
the expected radio range of 802.11p, which is supposed to vary from 600 meters to 1 km.

Boolean model We also consider the classical Boolean model where the nodes have a fixed radio range.
The FER p(x) is then equal to 0 for x in [0, R] and 1 for x > R. R is set to 700 meters in order to get radio
range comparable with the 2RM model.

4.2. Retransmission timer

The function timer(.) must decrease with the distance. We choose a function decreasing linearly with the
distance, and where the timer is at most 1000µs:

timer(x) = (−ax+ b)1000

With the chosen radio models, the maximum distance between the emitter and the receiver is 1100 meters, so
we get a = 1

1100 and b = 1. We add to this delay the time T required by a forwarder to access the channel and
transmit its frame. The MAC layer in 802.11p is similar to the IEEE 802.11e Quality of Service extension.
Application messages are categorized into one of the four queues depending on their priorities. During the
selection of a packet for transmission, the four queues contend internally. The selected packet then contends
for the channel externally using its selected contention parameters. We consider here that safety messages
use the highest priority. For the highest priority, a frame must wait AIFS = 2ts (Arbitration Inter-Frame
Space) where ts is the slot time (ts = 16 µs). Next, the transmission waits for a contention period randomly
selected in the Contention Window (CW), where CW = [0, 3ts]. So, it will be equal to 3

2 ts on average. Here,
we suppose that a forwarder systematically wins access to the channel, as it uses the highest priority and
the timer(.) function. The value of T is then T = 7

2 ts + 267 = 323 µs, where 267 µs is the time to transmit
a frame of 100 bytes at 3 Mbit/s. Therefore, the mean delay dS of a forwarder in ΦS , is

dS = E[−a(Si+1 − SSi
) + b]1000 + T

=
(
−a
λS

+ b

)
1000 + T

and the maximum delay for a forwarder is given by d0 = timer(0) + T = 1323µs.

5. Model Evaluation

In this Section, we compare the different analytical results to simulations. We use a simulator coded in C,
which implements the studied broadcast algorithm. It sets the vehicles’s location according to a Poisson point
process. The model used by this simulator is then very close to the theoretical one. It is used to estimate the
accuracy of the bounds of propositions 1 and 2 in relation to the real values, and to observe the impact of
the assumptions made in the different estimations (independence of Ti − Ti−1 in formula (3), stationarity of
ΦS and the assumption made in Proposition 2).

The set of parameters are given in Table I. The confidence intervals are not represented in the figures
because they are too small due to the great number of samples.

Distance covered by the message The total distance covered by the message is presented in Figure 2(b).
We chose small intensities of vehicles (between 1.0 and 5 veh/km) because for higher intensities the values
soar. There is a very small gap between theoretical formulae and the average obtained by simulations.
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Figure 3. Intensity of the emitters for the different FERs.
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Figure 4. Mean number of receptions per node for the different FERs.
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Figure 5. Delivery delay for a node at 5 km from the first emitter for the different FERs.
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Intensity of the emitters For the quantities relative to the second model, we vary the intensity from 8 to
100 vehicles per kilometer. It makes no sense to consider lower intensities, since it models the dissemination
of the message under stationary assumptions. Therefore, the theoretical evaluations are not accurate for the
first point (intensity=8.0) in certain curves. In Figure 3(a) to 3(b), we plotted the intensity of the emitters
obtained by simulation and compare it to the theoretical bounds given in Section 3.2.1. For the Boolean
model, all of the theoretical evaluations lead to the value of λS , since the points of ΦS are the only emitters.
For the other FER function, the second upper bound and the approximation offer the best evaluations. We
observe that the intensity of the emitters is higher when the FER is 2RM.

As we already mentioned, the only emitters with the Boolean model are the points of ΦS . When the FER
is 2RM, we observed from the samples that we can have at most one emitter just after each point of ΦS
corresponding to a node x which receives the message from the point S−(x) downstream, but not from the
point S+(x) upstream.

Mean number of receptions The mean numbers of receptions per node, plotted in Figures 4(a) and 4(b),
copy the behavior of the emitters’ intensity. Estimations from the second upper bound and the approximation
lead to very accurate results. Since the number of emitters is greater for 2RM, we logically get a higher number
of receptions per node.

Delivery delay In Figures 5(a) to 5(b), we plotted the delivery delay for a vehicle 5 km away from the
source of the message. For the two FER functions, the delay is perfectly bound by the analytical formulae.

6. Traffic simulator

As aforementioned, for small densities of vehicles, vehicle locations follow a Poisson point process. For greater
densities, the driver’s behavior (braking/accelerating) depends on the other vehicles. In this Section, we assess
the error in the performance of the broadcast algorithm when a Poisson process with high intensity is used.
We propose the use of micro-simulations [11] to generate realistic traffic of vehicles. We evaluate the broadcast
protocol with this traffic simulator and compare the results to the theoretical ones. The broadcast protocols
and the FER functions are the same as in the previous Section, but vehicle trajectories are obtained from
the traffic simulator rather than from the Poisson point process.

6.1. Presentation

In order to obtain vehicle movements close to reality we have developed a traffic simulator. This traffic
simulator allows us to faithfully emulate driver behavior. On a highway, driver behavior is limited to
accelerating, braking or changing lanes. We assume that there is no off-ramp on the section of highway.
A desired speed is associated to each vehicle. It corresponds to the speed that the driver would reach if
he was alone in his lane. If the driver is alone (the downstream vehicle is sufficiently far), he adapts his
acceleration to reach his desired speed (free flow regime). If he is not alone, he adapts his acceleration to the
vehicles around (car following regime). He can also change lanes if the conditions of another lane seem better.
All these decisions are functions of environment of the vehicles (speed and distance) and random variables
used to introduce a different behavior for each vehicle. This kind of simulation is called micro simulation
and the model we used is presented in detail in [1]. The model has been tuned and validated with regard to
real traces observed on a highway.

We simulated a road/highway of 14 km with 1, 2 and 3 lanes. The desired speed of vehicles follows a
Normal distribution with mean 120 km/h and standard deviation σ = 10. We used the same densities of
vehicles as in the previous sections. The vehicles’ density shown in the Figures corresponds to the mean
number of vehicles entering at the beginning of the simulated highway. When we considered several lanes,
the density was divided by the number of lanes. The abscissa in the figures is then the sum of the intensities
on the different lanes.
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6.2. Simulation Results
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Figure 6. Comparison of the distance covered by the message with the micro-simulator and the Poisson
process.
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Figure 7. Comparison of the delivery delay for a node at 5 km with the micro-simulator and the
Poisson process.

We compare results obtained with the micro-simulator and the theoretical results.

Distance covered by the message We plotted the distance covered by the message in Figures 6(a)
and 6(b). The errors between the theoretical results and the results obtained with the micro-simulator are
less than 1 km.

Delay In Figures 7(a) and 7(b) we plotted the delay with regard to the density of vehicles. For one lane,
there is clearly a spike in the mean delay. This spike is caused by an inhomogeneous distribution of the
vehicles on the road: very dense sections of the road/highway are followed by very sparse sections. We
discuss this phenomena in detail in Section 6.3. Sections of road/highway with sparse intensities of vehicles
increase the delay, which explains the observed results. For 2 and 3 lanes, this phenomena is reduced and
shifted to higher intensities.
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Figure 8. Comparison of the emitters intensity for the different FER with the micro-simulator and
the Poisson process.

Intensity of the Emitters Results are shown in Figures 8(a) and 8(b). Simulations based on the micro-
simulator and the Poisson process are similar when the FER is 2RM. For the boolean model, there is a
significant difference, especially for 1 lane.

6.3. Discussion

When the traffic reaches a certain intensity, most of the vehicles adapt their speed with regard to their
environment (the other vehicles). It is known that under high vehicle intensities [23, 15, 21], the traffic can
be described in terms of different congestion phases: phases where the speeds of the vehicles are low and vary
quite a lot between vehicles, and phases where the speed is lower and more equal. This phenomena explains
the results obtained with the micro-simulator. When the intensity increases, the traffic goes through the
different phases. The spikes in the curves correspond to a phase where temporary jams occur (very dense
sections with low speeds). It may just be caused by a vehicle slowing down, generating a wave effect upstream.
A very sparse section of the highway then follows this jam. This phenomena is often refered as stop-and-go
traffic. When we observe vehicle densities on the simulated highway, we observe this phenomena. When the
density of vehicles entering in the simulator is high, we find sections of the highway with a lot of vehicles
(up to 4 − 5 times the supposed density) corresponding to a jam, and following sections with only a few
vehicles. As the formulae are applied to the global density (computed on the whole highway) and not to
local densities, it causes the spikes in the figures.

The traffic is Poisson only for intensities less than 8 veh/km. Nevertheless, the simulations show that
the use of the Poisson point process gives good approximations, except for intensities corresponding to the
phase where the distribution of the vehicles is very inhomogeneous on the road/highway (stop-and-go traffic).
Intensities for which this phase occurs depend on the number of lanes. The impact of this phase seems to
be more significant for 1 than for 2 and 3 lanes, and varies with regard to the observed quantities and radio
models.

7. Conclusion

This paper proposed a probabilistic framework to assess the performances of broadcast protocols in VANET.
Our approach is based on point process representing the vehicle locations. One of the benefits of our model
is it does not suppose a particular radio environment. It allows us to study the impact of FER on the
broadcast algorithm. It appeared that the classical Boolean model gives the better results in terms of the
number of redundant receptions. On the other hand, more realistic FER functions involve a greater number of
redundant messages.The comparison of the analytical results with simulations using realistic traffic patterns
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shows that there is a phase of traffic for which the Poisson point process is particularly inaccurate.

In future works, we plan to study point processes able to model the traffic during the critical phase. We
think that Cluster or ON-OFF point processes may be more suitable for modelling vehicle locations when
the intensity along the road/highway is strongly inhomogeneous. Another avenue would might be to analyze
different broadcast algorithms and study the impact of the different traffic phases on their performances.
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APPENDIX

Proof of Proposition 1

Upper bounds The upper bound is built as follows. Let us consider the potential emitters of ΦO in [S0 = 0, S1].
The broadcast from S1 thins a potential emitter at x with probability p(S1 − x). The ith broadcast thins a potential
emitter at x with probability p(Xi−1 − x). The upper bound consists in considering that all the broadcasts are
performed by S1. Given S1, the point process describing the potential emitters after the ith broadcast is then an
inhomogeneous Poisson point process with density measure (λ−λS)(1−p(x))p(S1−x)i. There is a ith emitter if this
point process is not empty in [S0, S1]. It happens with probability

1− e−(λ−λS)
∫ S1
0 (1−p(x))p(S1−x)idx

The upper bound on the number of emitters of ΦO in [S0, S1] is then

Aupper =

+∞∑
i=1

(
1− E0

ΦS

[
e−(λ−λS)

∫ S1
0 (1−p(x))p(S1−x)idx

])
This bound may be rough, but we can easily refine it if we suppose that after the retransmission from S1 the other

retransmissions are performed by X1. The density of X1 is given by formula (6). We get :

Aupper2 =

(
1− E0

ΦS

[
e−(λ−λS)

∫ S1
0 (1−p(x))p(S1−x)dx

])
+

+∞∑
i=2

(
1− E0

ΦS

[
e−(λ−λS)

∫ X1
0 (1−p(x))p(S1−x)p(X1−x)i−1dx

])

Lower bound A straight lower bound consists in taking only the emitters in ΦS . In other word, we consider
A = 0, and we get λE ≥ λS .

Approximation We propose a method to estimate the mean number of emitters in [0, S1]. The method is as
follows. We estimate the location x1 with x1 < S1 such that there is exactly one potential emitter between x1 and S1

on average. We set the location of the first emitter at x1, look for the location x2 of the second emitter, and so on,
until we reach 0. More formally, given the sequence (xj)j=0,..,i−1 with x0 = S1 and 0 < xi−1 < .. < x2 < x1 < x0, we
compute xi as a solution of the equation:

∫ xi−1

xi

(1− p(x))

i−1∏
j=0

p(xj − x)dx = 1

We stop when xi < 0. Let I be the index of the smallest xi such that xi > 0. The mean number of emitters is then
estimated as:

Aapprox = I +

∫ xI

0

(1− p(x))
I∏
j=0

p(xj − x)dx

Remark 2. In practice, we need to condition by the value of the random variable S1. In the numerical evaluation,
we use a Riemann integration with an interval of 1 meter. Computation is then very fast, less than 1 second with a
typical computer.

APPENDIX

Proof of Proposition 2

Lower bound on the delay (dmin) In the best case, the node at x receives the message from S−(x) directly,
where S−(x) is the closest node of ΦS from x with S−(x) < x. If ax is the mean number of emitters in ΦS ∩ [0, x] and
dS the mean delay added by each transmitter, the mean delay at x denoted delay(x) is then (ax − 1)dS (ax ≥ 1 as it
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systematically counts the first emitter at 0). However, the initial emitter at 0 does not add any delay, so we subtract
1 from ax. The computation of ax is not trivial. It is formally defined as:

ax = E0
ΦS

 ∑
xi∈ΦS

1lxi∈[0,x]


Here, we use max(λSx− 1, 0) as a lower bound of ax − 1.

We add to this bound a term taking into account the fact that the node at x does not receive the message from
S−(x), due to a frame error, but from S+(x) (the closest node of ΦS from x with S+(x) > x). It adds dS to the delay
on average. It is still a lower bound since we do not take into account the fact that a transmission may be received
from an emitter of ΦO with a greater delay. Formally, the probability of x receiving the message from S−(x) is given
by:

E0
ΦS

[(
1− p(x− S−(x))

)]
(7)

It may be estimated by the probability of a typical node of ΦO receiving the message from the previous forwarder
S−(0):

E0
ΦO

[(
1− p(S−(0))

)]
(8)

We get,

delay(x) ≥ dSaxE0
ΦO

[
1− p(S−(0))

]
+ dS(ax + 1)E0

ΦO

[
p(S−(0))

]
≥ dS

(
ax + E0

ΦO

[
p(S−(0))

])
≥ dS

(
max(λSx− 1, 0) + E0

ΦO

[
p(S−(0))

])
From the Neveu’s exchange formula of two Palm measures, we get:

E0
ΦO

[
p(S−(0))

]
= λSE0

ΦS

[∫ S1

0

p(x)dx

]
= λS

∫ +∞

0

∫ y

0

p(x)dxfS1(y)dy

Upper bound on the delay (dmax) The lower bound supposed that, in the worst case, x receives the message
from S+(x). However, it may receive it from another node instead (different from S+(x) and S−(x)). In the worst
case, the delay generated by the last transmitter is d0 = timer(0) + T . There are thus 3 possibilities for the first
reception of node x:

• x receives the frame from S−(x) (with probability estimated as E0
ΦO

[
1− p(S−(0)))

]
), the delay is then axdS ;

• x receives the frame from S+(x) (with probability estimated as E0
ΦO

[
p(S−(0))(1− p(S+(0)))

]
), the delay is

then (ax + 1)dS ;
• x receives the frame from an emitter in the interval (S−(x), S+(x)) (with a probability estimated as

E0
ΦO

[
p(S−(0))p(S+(0))

]
), an upper bound on the delay is then axdS + d0.

Here, we use λSx as an upper bound on ax − 1. The upper bound is thus,

delay(x) ≤ dSaxE0
ΦO

[
1− p(S−(0))

]
+ dS(ax + 1)E0

ΦO

[
p(S−(0))(1− p(S+(0)))

]
+ (axdS + d0)E0

ΦO

[
p(S−(0))p(S+(0))

]
≤ dS

(
ax + E0

ΦO

[
p(S−(0))

])
+ (d0 − dS) E0

ΦO

[
p(S−(0))p(S+(0))

]
≤ dS

(
λSx+ E0

ΦO

[
p(S−(0))

])
+ (d0 − dS) E0

Φ

[
p(S−(0))p(S+(0))

]
(9)

with

E0
ΦO

[
p(S−(0))p(S+(0)

]
= λSE0

ΦS

[∫ S1

0

p(x)p(S1 − x)dx

]
= λS

∫ +∞

0

∫ y

0

p(x)p(y − x)dxfS1(y)dy

Approximation on the delay (dapprox) We also propose an approximation on the delay, which is not proved
to be a lower or an upper bound. It consists in approximating ax − 1 by max(λSx − 0.5, 0) rather than λSx in
formula (9).
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