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Abstract— OLSR is a recent routing protocol for multi-
hop wireless ad-hoc networks standardized by the IETF.
It uses the concept of Multi-Point Relay to minimize the
overhead of routing messages and limit the harmful effects
of broadcast in such networks. In this paper, we are
interested in the performance evaluation of Multi-Point
Relay selection. We analyze the mean number of selected
MPR in the network and their spatial distribution.

I. INTRODUCTION

Due to the emergence of wireless local area net-
work technologies such as 802.11 [3], hyperlan [4] or
bluetooth [5], the use of mobile wireless networks is
growing fast. With these technologies, new challenges
arise such as connecting wireless nodes without any
infrastructure. In order to connect nodes which are not
in each other’s radio range, packets need to be relayed
by intermediate nodes. Such networks thus require for-
warding capabilities in the nodes and a routing protocol
to find the available path to the destination. Routing in
such a wireless environment is very different to classical
routing in wired networks. Indeed, nodes are mobile by
essence and may vanish or appear due to the wireless
nature of the physical layer. The topology is thus in
constant evolution. However, routing advertisements are
expensive in resources since a node spends energy while
transmitting as well as receiving and each message
sent by a node is received systematically by all its
neighbors. Therefore, broadcasted advertisements must
be limited in order to maximize the network lifetime.
Consequently, an accurate routing protocol needs to be
distributed, must guarantee a low level of traffic control
overhead but should be able to rapidly take into account
link failures due for instance to node movements. The
Internet Engineering Task Force (IETF) addresses the
design of such protocols in its MANET! (Mobile Ad-
hoc Networks) working group.

One of the recent standardized protocols is OLSR
(Optimized Link State Routing Algorithm) presented
in [1], [2]. In OLSR, only a subset of preselected nodes
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called MPR (Multi-Point Relay) are used to perform
topological advertisements. At the same time, control
messages (containing e.g. routing information) are broad-
casted and forwarded only by these MPR. Overhead is
thus minimized and the well known storm problem [6]
due to broadcast is avoided.

In this paper, we are interested in the performances of
MPR selection. We analyze the mean number of selected
MPR in the network and their spatial distribution. We
then show that the algorithm used for selecting the MPR
is very efficient and that the different proposed variants
of the algorithm always lead to very close performances.

In Section II, we detail the OLSR protocol and the
MPR selection algorithm. In Section III, we give results
about probabilities and mean quantities relative to the
MPR selection algorithm. Numerical results and simu-
lations are presented in Section IV. We conclude and
discuss future works in Section V.

II. OLSR

OLSR is a proactive routing protocol for Mobile Ad-
hoc Networks (MANET), i.e., a network topology is
permanently updated on each node in order to provide
a route as soon as needed. It uses the concept of Multi-
Point Relay to minimize the overhead of control traffic
and to provide shortest path routes (in number of hops)
for all destinations in the network. Each node chooses in
its neighborhood a subset of nodes: its MPR. A MPR set
is thus relative to each node. Each node keeps the list of
its neighbors which have selected it as MPR. This list is
called the MPR-selector list. It is obtained from HELLO
packets which are periodically sent between neighbors.
In order to build the database to route the packets, all
the MPR broadcast their MPR-selectors in the network.
The shortest path to all possible destinations is then
computed from these lists, a path between two nodes
being a sequence of MPR.

Since only MPR are authorized to send their MPR-
selectors, the control traffic is drastically reduced com-
pared to classical link-state algorithms. The MPR are



also used to minimize the flooding of broadcast mes-
sages, as only MPR transmit them. When receiving
a broadcast message M from a node u, a node v
forwards it only if it is the first time v receives M
and if node w is in node v’s MPR-selectors list. This
technique allows to reduce the number of transmitters of
broadcasted messages. In the next section, we detail the
algorithm which allows a node to select its MPR within
its neighborhood. It consists of choosing nodes such that
the whole 2-neighborhood is covered.

A. MPR selection

As the optimal MPR selection is NP-complet ([10]),
we give here the Simple Greedy MPR Heuristic which
is the one currently used in the OLSR implementation.

For a node wu, let N(u) be the neighborhood of
u. N(u) is the set of nodes which are in u’s range
and share a bidirectional link with «». We denote
by Na(u) the 2-neighborhood of w, i.e, the set of
nodes which are neighbors of at least one node of
N(u) but which do not belong to N(u). (Na(u) =
{vst Jwe N(u)|ve Nw)\{uv}U N(u)}). For a
node v € N(u), let d} (v) be the number of nodes of
Ny (u) which are in N (v):

dy (v) = |N2(u) N N(v)|

For anode v € Na(u), let d,, (v) be the number of nodes
of N(u) which are in N(v):

dy, (v) = [N(u) N N (v)]

The node u selects in N(u), a set of nodes which
covers No(u). We define as M PR(u) this set of MPR
selected by u. In other words, M PR(u) is such that:

U N@ =uUN(u)UNy(u)
vEMPR(u)

The algorithm is the following:
Algorithm 1 Simple Greedy MPR Heuristic

For all node v € V
For all node v € N(u)
if Gw € N(w)NNa(u) | d, (w) = 1) then
Select v as M PR{u).
> Select as M PR(u), nodes for which there is a
node of Na(u) which has v as single parent in
Remove v from N(u) and remove N(v) N
Ny(u) from Na{u).
end
while (N2 (u) # )
For all node v € N(u)

if (df (v) = maz e n(wydf (w)) then
Select v as M PR{u).
> Select as M PR(u) the node v which cover
the maximal number of nodes in Na(u).
Remove v from N(u) and remove N (v)N
No(u) from Na(u).
end
The first step selects as MPR the nodes which cover
“isolated nodes of Na(u)”. The nodes covered this way
have a single neighbor in N(u) and thus must be
included into the set of MPR if we want to cover the
whole 2-neighborhood. Therefore, only the second step
of the algorithm can be improved in order, for instance,
to find the minimum number of MPR.

B. Related works

Most of the literature about the performances of OLSR
deals with the efficiency of the OLSR routing protocol
itself or the different flooding techniques using MPR
([7], [8], [9], [10]). Only a few papers have studied the
different algorithm performances for the MPR selection.
An analysis of the MPR selection on the line is given
in [13]. Other analytical results in random graphs and
random unit graphs are also given in [8]. For instance, a
rough upper bound on the size of the MPR set is given
in a random unit graph. Other very interesting results
are presented in [12]. The authors have proposed and
analyzed other heuristics for selecting MPR. Alternative
algorithms to the classical MPR algorithm described
above are given in order to reduce the number of
collisions, minimize the overlap between MPR or maxi-
mize the global bandwidth. All results for the proposed
algorithms are quite similar, particularly for the mean
number of MPR per node. Indeed, as we will show,
almost all the MPR of a node are selected during the first
step of the algorithms. This first step cannot be changed
as it consists of choosing neighbors which cover isolated
nodes (nodes in the 2-neighborhood covered by a single
neighbor). Therefore, these nodes must be chosen (in
order to cover the whole 2-neighborhood) and they must
be chosen first in order to minimize the number of MPR.

III. ANALYSIS

We are interested in the properties of the MPR set
of a typical node. Therefore, we do not consider the
whole network but only a “typical point” located at
the origin of the plane and its 1 and 2-neighborhood.
Our model is similar to the classical unit random graph
used to model ad-hoc networks. This family of models
is not completely realistic since it omits interference
between the nodes. More realistic models have been



proposed, for instance in [14] where the authors present
an accurate model for a CDMA network. However, we
have chosen a more general model since we do not make
any assumptions about the wireless technology used by
the nodes.

Let be a Poisson point process on B(0,2R) of inten-
sity A > 0. We add a point 0 at the origin for which
we study the MPR selection algorithm. We assume that
there is a bidirectional link between two nodes if and
only if d(u,v) < R where d(u,v) is the Euclidean
distance between u and v and R € IRT* a constant.
The neighborhood of the point 0 is thus constituted
of the points of the Poisson point process which are
in B(0,R). We use the notation already defined in
Section II: N (resp. Ny) is the 1-neighborhood (resp.
the 2-neighborhood) of the point 0.

A. General results

Let’s note A(r) the area of the intersection of two balls
of radius R and where the distance between the centers
of the balls is r and A;(u,r, R) the area of the union of
two discs of radius R and « and where the centers are
distant from r:

P
A(r) = 2R? arccos (%) —ry/R? — TZ

and
R2 _ 42 2
Ai(u,r,R) = rR\/l - ZUTM
R2 _ 2 2
+R? <7r — arccos #)

9 T R? — 42
+u“ | m—arccos— |1 —
2u r2

Proposition 1: Let u be a point uniformly distributed
in B(0,R) and v be a point uniformly distributed in
B(0,2R)\B(0, R).

2w R
E[df(uw)] = A /0 /0 (rR?* — A(r))rdrdf
3v3
- AR2T
2R
E [dy (v)] = Agiﬂ/}z A(r)rdr = )\RQ\f

E[|N|] = A\xR?
E[|Nof] = 3ArR*P(dy (v) > 0)

9 2R
= 3MR? (1 - @/ exp{—MNA(r)}rdr

All these quantities can be c§mputed in the same

way. We use the following properties of a Poisson point
process: conditioned by the number of points in B(0, R)
(resp. in B(0,2R)\B(0, R)), the points are indepen-
dently and uniformly distributed in B(0, R) (resp. in
B(0,2R)\B(0, R)) and are independent of the points
of B(0,2R)\B(0, R) (resp. B(0, R)). For instance, we
are able to find the distribution of the number of points
of Ns covered by a point u of B(0, R): it is a discrete
Poisson law of parameter A\v(B(u, R)\B(0, R)) (v is the
Lebesgues measure in IR?) with « uniformly distributed
in B(0, R).

B. Analysis of the first step of the MPR selection

In this section, we compute several quantities relative
to the first step of the algorithm. We use M PR; to
denote the set of points of N which are selected as
MPR during the first step of the algorithm. In the next
proposition, we give the mean number of points v € Ny
such that dy (v) = 1. These points are called isolated
points in the remaining of the paper. The points of N,
neighbors of these isolated points, belong necessarily to
MPR, as they are the only way to reach them from
node 0. However, this quantity does not give the size of
M PR, since several isolated points can be reached by
the same M PR, point.

Proposition 2: Let v be a point uniformly distributed
in B(0,2R)\B(0, R) and D the set of points v such that
dy (v) = 1.

2R
P(dy(v) =1) = ?2?/}2 AA(r)exp{—MA(r)}rdr
o _Pldy(w) =1)
]P)(do (’U)—1|'U€N2) = W

and,

2R
E[|D]] = 27r)\2/ A(r)exp{—NA(r)}rdr
In the next propositicl)zn we give a lower and an upper
bound for the mean size of M PR;.
Proposition 3: Let u be a point uniformly distributed
in B(0, R).
2

P(ue MPR;) > 5P (dg (u) > 0) x

R pRAr
/ / f(z,r, R)exp {—\ (2nR*— A1(R, z, R)) }rdzdr
o Jr



with

J(z,r, R) = A

§A1($, r,R) — 27mc} exp {—\ (4i(z,7, R) — 7z?)
z

The next formula is the direct consequence of the
formula above,

R R+r
E[|MPR1|]22/\7T]P(d3L(u)>O)/O /R fz,r, R)

x exp {—\ (27 R?— A1 (R, z, R)) }rdzdr

Moreover, since there is at least one isolated point by
point of M PRy, the mean number of isolated points
offers an upper bound:

E[[MPR|] <E[D]]
Proof: We just give here a sketch of the proof.

We obtain a bound on the probability that a point in
N belongs to M PR;. A sufficient condition that u €
M PR is that the farthest point of N (u) from 0, denoted
w, is such that dy (w) = 1. Given the distance of u
from 0 (expressed by r in the formula), we calculate the
probabilistic distribution function of the distance of w
and deduce the density function of the distance between
w and 0 (denoted f(z,r, R) in the formula). Given the
distance between w and u, we are able to compute the
probability that dj (w) = 1.

This bound is very accurate since, in most cases, the
isolated points are the farthest points from 0. |

We are also interested in the spatial distribution of
the M PR; points. For u, a neighbor of 0 at distance r
(r < R), we give a lower and an upper bound on the
probability that u belongs to M PR;.

Proposition 4: Let u be a point at distance 7 (r < R)
from the origin.

P(u€ MPRy) > (1 —exp{—A(nR*> — A(r))}) x

/RH F(v, 7, R) exp {—\2rR? — A (R, v, R))}dv
R

P(u€ MPR) <1—(1—exp{-A=—

Proof: The lower bound is obtained in the same
way as the bound in Proposition 3 but given the distance
between the origin and its neighbor u. The upper bound
is obtained as follows. If there is a point in the lower
and upper semi-intersections between the two circles as
illustrated in Figure 4(a), the point « does not cover any
isolated point. In fact, all the neighbors of u in Ny are

A(R+r)})2

1= exp{—X(4:1(R,r, R) — nR?)} .

covered by u and by at least one point of the two semi-
intersections. This gives a lower bound on the probability
that « does not belong to M P R; from which we deduce
the upper bound on the probability that uw belongs to
MPR,.

|

IV. NUMERICAL RESULTS AND SIMULATIONS

(a) A\m=6

(b) Am =15

Fig. 1. MPR selection with Ax = 6 and Am = 15.

In simulations, the nodes of the network are repre-
sented by a Poisson point process in B(0,2) (R = 1)
of intensity A > 0. We add a point at 0. We study
for this point the number of MPR selected at each step
of the MPR selection and we show that the analyti-
cal results are very close to the simulations” ones. In
Figures 1(a), 1(b), 2(a) and 2(b), we have represented
samples of the model for different values of Aw. We



(a) Ar =30

(b) Amr =45

Fig. 2. MPR selection with Az = 30 and Aw = 45.

point out that Ax is the mean number of neighbors of a
node in the network. The point at the origin for which
we compute the MPR is the black point in the middle
of the figures. The points in the central circle represent
the set IV (the neighbors of 0). The larger points of this
set represent the M P R; points (points selected as MPR
during the first step of the algorithm). The points outside
the circle are the points of Ny (the 2-neighborhood of
0) and the blue points are the points of N, which are
covered by the M PR points.

We note that in all four cases almost the entire 2-
neighborhood of 0 is covered by the M PR; set. The
addition of one MPR would suffice to cover the rest of
Nsy. We have shown in the previous section that there
is an appreciable number of isolated points giving rise
to a certain number of M PR; points. These M PRy

points seem to be distributed very close to the boundary
of B(0, R) and regularly scattered on it (which confirms
the results of the Proposition 4). Therefore, they cover a
very large part of No.

o

]

(a) Mean number of M PR and M PR; obtained by
simulation when Ax varies.

0 20 13c

(b)Y Comparison of the number of M PR; obtained
with simulations and the analytical bounds when Am
varies.

Fig. 3. Mean number of M PR and M PR; obtained by simulation
and comparison with the lower bound.

Figure 3(a) shows the mean number of M PR and
M PR obtained by simulation. We observe that approx-
imately 75% of the MPR are in M PRy which confirms
that the M PR, cover almost the whole 2-neighborood.
In Figure 3(b), we have plotted the mean number of
M PR, obtained by simulation and the analytic lower
bound. As explained before, the lower bound is very
close to the mean size of the set M PR;.

The lower and upper bounds on the probability that
a point belongs to M PR; described in Proposition 4
allow us to show that the M PRy points are very close
to the boundary. In Figure 4(b), these bounds are plotted
when the distance between 0 and its neighbors varies
from 0.2 to 0.999 and with A = 15. These curves
incontestably show that M PR; points are distributed
closely to the boundary of B(0,1). We point out that
these results depend on A: as X increases, the distance



Upper semi-intersectign

Lower semi-inkersection
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(a) The two semi-intersections used in the proof of
Proposition 4.

T O AR STETET AR ST AL A S AT
—

L I

distance from the origin

(b) Lower and upper bounds on the probability of
belonging to M PR, w.rt the distance from the
origin.

Fig. 4. Semi-intersections used in the proof of Proposition 4 and the
bounds on the probability of belonging to M PR; w.r.t. the distance
from 0.

between M P R; points and 0 increases too. As described
in [6], for messages broadcasted over the network, part
of the redundancy perceived by nodes is linked to the
size of the intersection between the MPR radio areas.
Since the distance between a point and its MPR is
great, these intersections are minimal, thus minimizing
the redundancy.

V. CONCLUSION

In this paper, we have computed some quantities
relative to the MPR selection algorithm in OLSR. We
have shown that approximately 75% of the MPR are
chosen during the first step of the algorithm. Since
this step is always necessary for the MPR set to cover

the whole 2-neighborhood, variants of the algorithm
used in OLSR lead to similar performances. We have
also highlighted the fact that these MPR are distributed
close to the radio range boundaries, limiting the overlap
between MPR. This feature also underlines a robustness
problem. Indeed, if 75% of node u’s MPR cover at least
one isolated node in Ny(u) and if some M PR(u) fail,
there is a great probability that at least one node in No(u)
does not receive messages from u.

These results have been presented for a particular
model using Poisson point process. Other models, more
realistic, which take into account the properties of the
radio layer could be considered in future works. Results
obtained here could be compared to simulations consid-
ering CDMA network or 802.11 network.
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