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Abstract

Content Delivery Networks (CDN) became in the last years an important element of the
Internet architecture. Between their most important benefits, we can cite the enhancing of the
quality of service (QoS) perceived by users and the reduction of the cost of content delivery.
This is accomplished by placing servers that host content copies (or that forward streamed
content) near the users. A user may then download a copy of the required content element
from the closest server, thus with a better QoS. Documents are not delivered end-to-end any
more. They are delivered once to the servers and then from the servers to the closest users,
thus, under correct design, reducing the delivering cost.

In this paper, we consider the problem of optimizing CDN server placement. First, we
propose a new modeling approach of the Internet and the CDNs based on Stochastic Geometry.
Different point processes on the plane are used to represent the topology of the Internet
(Interconnection of Autonomous Systems) and the placement of CDN servers. Then, we
propose a cost function reflecting the server costs and the quality of service perceived by the
users. The cost function is indeed a functional of the above introduced point processes. The
optimization of the cost function allows us to quantify the optimal number of servers and their
optimal placement. The impact of the different parameters on the system is also evaluated.
We first analyze a system based on only one type of servers. Then, we analyze the more
general case where different server classes and object placement policies are considered. For
the last case, we are able to compare different policies for content placement that can take
into account the popularity of different content elements, and to optimize the design of these
policies.

1 Introduction

The success of the Internet services, like the Web, has motivated in recent years the emergence
of Content Delivery Networks (CDNs), targeted to improve the quality and to reduce the cost of
content delivery. A CDN is composed of a set of servers, called surrogate servers, which are deployed
on the Internet (overlay approach). The surrogates host copies of web content (we concentrate
in this paper of the Web service, even though most of the presented results can be applied to
other Internet services). Thus, a user may transparently download a nearby copy of this content
rather than fetch i1t from the, maybe distant, server of the content provider. On one hand, the
QoS perceived by the users when downloading objects stored in the CDN servers is thus dependent
on the number and placement of the surrogates. On the other hand, the cost of the CDN is also
dependent on these parameters, so an optimization of the CDN topology is required. In this paper
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we propose a new modeling approach for CDNs that allows us to optimize their topology when
considering a realistic cost function.

The problem of placement of CDN servers has already been addressed in related works. In the
usual approach, the different components of the model, as the network topology, the location and
the number of users and the quality of service parameters are supposed to be known a priori (see,
for example, [1], [2], [3] and [4]). More elaborate parameters such as the consumed bandwidth or
the read, write and storage costs are sometimes also taken into account ([5], [6]).

Unfortunately, the location of the users or the object popularity most of the time cannot be
known in advance and vary in time. Moreover, this static approach leads to NP hard optimization
problems which may be difficult to optimize when a large network, as the Internet, is considered.
Therefore, in order to quantify the optimal deployment of CDN servers, a macroscopic model is
more appropriate.

In this paper, we propose a random geometric model for CDNs based on point process dis-
tributed in the plane. A similar modeling approach has proven to be efficient to optimize other
types of telecommunication systems (See, for example, [7], [8], [9] and [10]). A survey of the use
of stochastic geometry may be found on [11].

In our study, marked point processes are used to represent the Autonomous Systems (ASes) of
the Internet and the servers of the CDN.

We introduce a cost function which is constituted of two terms : the first term represents the
servers cost and the second one reflects the quality of service perceived by the users. The cost
function is indeed a functional of the above introduced point processes. We are able to compute
the explicit formula for this cost function which depends on a reduced number of parameters. The
optimization of the cost function allows us to quantify the optimal number of servers. The impact
of the different parameters on the system is also evaluated.

In our approach, the complexity of the optimization problem is independent of the considered
network size.

We first analyze a system based on only one type of servers. Then, we analyze the more general
case where different server classes and object placement policies are considered. Each server class
hosts a subset of the CDN objects. For the last case, we are able to compare different policies for
content placement that can take into account the popularity of different content elements, and to
optimize the design of these policies.

2 Stochastic Geometry model of CDNs

In this section we present an analytical model of CDNs based on the Stochastic Geometry theory.

A marked Poisson point process distributed in IR?, denoted by N, with intensity A (A € IRT),
represents the Autonomous Systems (ASes) of the Internet. More precisely, each point of the point
process represents an AS.

Two marks are associated with each point of N. Let # be a point of N. The first mark associated
with 2z, denoted by m,, represents the number of requests per time unit which emanate from the
users of the AS located at x. We denote by m the mean value of m. The second mark indicates
whether there is a surrogate in the corresponding AS or not. This mark has a Bernouilli law of
parameter p (0 < p < 1). Each mark process is independent and identically distributed (i.i.d.) and
both mark process are independent. We denote by N, and N;_, two point process obtained as a
thinning of N using the second mark process. The process N, (resp. Nj_,) represents the points
of N for which the corresponding mark is equal to 1 (resp. 0). By the properties of the Poisson
point process, N, and Nj_, are independant Poisson point processes.

Without lost of generality, the point processes N, N, and Nj_, are observed in the open ball of
radius R and centered at the origin of the plane. This ball is denoted by B(o, R). R is considered
as the radius of the Internet.

A user in an AS 1s supposed to download the documents of the CDN from the closest surrogate
server with regard to the Euclidian distance. For any point z of N representing an AS, all the
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Figure 1: Poisson point processes and Voronoi tessellations

users of this AS will fetch the documents from the server in a given AS (represented by a point
of N,). For each server s, we can thus define a domain in the plane that contains all ASes for
which the users will download the documents from s. For a point y of N, where a server is placed,
this domain is the set of points of IR? which are closest to y than to any other point of N,. This
domain is called the Voronoi cell of y with regards to N, and is denoted by V,(N,). The set of
Voronol cells for all the points of N, forms a tessellation of the plane. A Poisson point process and
the corresponding Voronol tessellation are represented in Figure 1(a). In Figure 1(b), we plot the
process N, (the crosses), its tessellation and the points of Ni_, (the points).

3 Optimization of a CDN with homogeneous servers

3.1 Cost function

The ideal solution would be to deploy a server in all the ASes. All the users would thus perceive
a good quality of service in terms of delay and bandwidth. However, the servers have a cost, so
a tradeoff must be found between the number of servers to deploy and the quality of service seen
by the users. Consequently, our cost function has two components. We partially reuse here the
structure of the cost function described in [1].

The first component expresses the annoyance perceived by the users. This component increases
with the distance between the users and the servers and thus decreases with the number of servers.
It corresponds to the sum, for all points of N, of a function f of the distance between the point
of N and its closest server in the CDN (this distance is zero if there is a server of the CDN in the
considered AS) multiply by the number of requests per second issued in this point.

The second component is the servers cost. In a first approach, we associate to all the servers
the same cost «.

The cost for a sample of our stochastic model has the form :

Cost = Z a4+ Z my fzy),
rEN, yeEN

where 2, is the Euclidian distance between a point y of N and its closest point of N,. The cost
function that we consider i1s the mean value of this function. The computation of the cost function
is given in the appendix. In the case f(0) = 0 we obtain':

!The computation presented in the appendix do not require any hypothesis on the value of f(0). We present
here this formula because all our numerical examples suppose f(0) = 0.
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3.2 Computing function f

Nunber of BGP hops | Number of ASes ‘

ASes reachable by 1 AS hops | 49
ASes reachable by 2 AS hops | 498
ASes reachable by 3 AS hops | 5 906
ASes reachable by 4 AS hops | 4 971
ASes reachable by 5 AS hops | 1 902
ASes reachable by 6 AS hops | 469
ASes reachable by 7 AS hops | 81
ASes reachable by 8 AS hops | 6
ASes reachable by 9 AS hops | 1

Figure 2: Number of ASes reachable in terms of the number of hops

The QoS perceived by a user depends strongly on the number of ASes in the path between the user
and the server. Indeed, the bottlenecks of the network are often at the the ASes interconnection
points. Nowadays, there exists some mechanisms which allow the DNS server to redirect a request
to the closest server with regards to the number of BGP hops (Border Gateway Protocol, see [14]).

We will use the number of BGP hops as the metric of the QoS perceived by the users. Thus, we
need to compute a function f (see the cost function in the previous section) which is close to the
real distribution of the number of BGP hops between the ASes of the Internet. In a first step, we
estimate the cumulative distribution function of the number of hops between two ASes randomly
chosen in the Internet. In a second step, we compute f such that the distribution of f applied to
two points of N randomly chosen corresponds to the distribution estimated in the first step.

These two steps are detailed as follows: We assume that the number of ASes between two given
ASes increases with the Euclidian distance between these ASes. The users of a AS are then served
by the closest server with regard to the Euclidian distance as explained in Section 2.

In order to choose the most realistic function f representing the number of hops between the
ASes we based our estimation on real BGP tables of various ASes. We obtained from [17] the data
indicating the number of ASes reachable from a given AS as a function of the number of BGP
hops. We computed the average of the 43 tables obtained from the site. The result is shown in
Figure 2. We computed the cumulative distribution function of the number of hops which separate
two given ASes. This estimation approach is a first approximation, in our future works we shall
improve it. In particular, we plan to consider a more accurate description of the connectivity of
the ASes (from the data we used, it follows that the ASes have a larger connectivity than the real
one when considering the whole network).

Let 7 be the random variable representing the Euclidian distance between two points randomly
chosen among the set of points of N. We compute the function f such that the distribution of
J(r) corresponds to the distribution of the c.d.f. previously computed. Since N is a Poisson point
process, knowing that a given number of points of N are in B(o, R), these points are independently
and uniformly distributed in B(o, R). We are then able to compute the distribution of 7 and to
evaluate the function f. The function f is given in Figure 6(b), where 2 and y are the two points
of N randomly chosen.



3.3 Optimization, numerical results

We optimized the cost function introduced in Section 3.1 with the function f defined in Section
3.2. In this case, the cost function is bounded and then it has at least one minimal value when
p € [0,1]. In the numerical cases that we have studied, we found that there is a unique value of
p €]0, 1] which minimizes the cost function.

In this section, unless explicit indication, we fix the following parameters: the number of ASes
equals 10 000 ASes? (this means that A = @ for R = 1), o = 300 and m = 100.

In Figure 3(a), we draw the cost function in terms of p. We observe that the optimal value of
p is close to 0.03. This 1s the optimal proportion of ASes in which a server of the CDN should be
deployed. From p, we can easily deduce the optimal number of servers of the CDN which is pAr.
The number of servers is an important element of the deployment cost.

In Figure 3(b), we represent the cost function when o = 0 (we neglect the server costs) in order
to evaluate the impact of the number of servers on the QoS. The slope of this function increases
with p (decreases in absolute value). There is a great benefit of increasing p for small values of
this parameter: in this case, when a new server is deployed, the content is brought closer for a set
of ASes. For large values of p, the impact of increasing p becomes negligible (for p > 0.3 in Figure
3(b)). Indeed, in this case, almost all the ASes are already at most at one hop of an AS with a
server and adding a new server is just beneficial for the AS where the new server is deployed.
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Figure 3: Cost functions

3.3.1 Impact of m

As it can be seen in the explicit formula obtained in Section 3.1, the cost function is insensitive to
the distribution of m, it depends only on its mean, m.

Figure 4(a) shows the optimal value of p when 7 varies from 5 to 200. We observe that the
curve is concave, which corresponds, as we explain in the following, to the same phenomena that
allowed us to interpret Figure 3(b). It is clear that p increases with 7@ since the second term of
the cost function increases with m and decreases with p. For small values of 7 and then of p, an
increase of m implies an important increase of p since adding a server will benefit more requests
per ASes (7 has increased) for several ASes (those for which the new server becomes the closest
one). For large values of 7 and then of p, an increase of T implies a less important increase of p
since adding a server will benefit more requests per ASes of a reduced number of ASes (for p near
1, only the requests from the AS to which a server has been added will perceived some benefit).

2Which is a realistic value for the present Internet.
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In Figure 4(b), we observe that when 7 reach «, the optimal value of p becomes 1. Indeed, the
cost of a server becomes less expensive than the cost of downloading content from a neighborhood
AS. In the rest of the paper, we shall consider only the case where m < «.

In figure 5(a), we plot the cost function at the optimum when 7 varies. We observe that the
cost 1s almost linear with m.

3.3.2 Impact of «

We evaluate here the impact of the servers cost a on the optimal proportion of ASes which host
a server. As expected, the optimal value of p decreases with the servers cost (as shown in the
Figure 6(a)). The convexity of the curve can be explained by using the same arguments that in
the previous section. In Figure 5(b), the cost function at the optimum is plotted. It is concave
with the server costs which is related with the fact that the optimal p is convex in terms of «.

4 Optimization of a CDN with heterogeneous servers

In this Section, we extend the previous model to consider the hererogeneous servers case and
to evaluate different content placement policies that can depend on content popularity. Usually,
content elements hosted by the CDN are not placed in all the servers. Therefore, the quality
of service perceived by a user depends on the location of the servers where the required content
element, is hosted.

In our extended model, we consider several classes of servers. Each class of servers is in charge
of a set of objects (content elements). An object is hosted in all the servers of a given class.

We model the placement of the servers of a given class ¢ by a Bernouilli thinning of parameter
p; of the Poisson process N, that we denoted by N;. There 1s an independent and homogeneous
thinning of N per class. We denote by n the number of classes. These Ny, ..., N, are independent
Poisson Point process of intensities A\; = p;A, ¢ = 1,...n. In other words, N; describes the ASes
where the servers of class ¢ are deployed. We propose a global cost function that takes into account
the class where the objects are hosted (and then the placement policies) and the different costs of
the servers of different classes. For instance, the server costs may depend on the storage capacity
of the servers as we shall see in Section 4.2.

We define:

S

rEN;

Cost = ZH:E
i=1

where ¢; 1s the probability that a requested object is stored in the servers of class ¢ and zf/ 18
the distance between a point y of N and its closest point of N; (the closest class i server). In
the following sections, the probabilities ¢; will be computed for different objects popularities and
placement policies.

+ Z%E Z myf(z;) )
i=1

yeEN

4.1 Examples of placement policies

We present here two placement policies for the case of two classes of servers. The results can be
easily extended to any number of classes. We denote by K (K € IN*) the total number of objects
stored by the CDN.

4.1.1 Object popularity based policy

The first policy is based on the popularity of the objects hosted by the CDN. Among the K objects,
the d (d € IN*) most popular objects are stored in class 1 servers and the other objects are stored
in class 2 servers. Basically the idea 1s that we should have for this case many class 1 servers



hosting a reduce number of very popular objects and then will be cheap and a few class 2 servers
hosting most of the objects and then being expensive.

Several studies have shown that the distribution of the object popularities is well modeled by
a Zipf law of parameter 1 (see [15] and [16]). In these studies, the popularity of a given object
means exactly the ratio between the number of requests for this object and the total number of
requests for all the objects.

If the objects are ordered by popularity from 1 to K (the most popular is the first object) and
if we note X the number associated to an object following this order, we have :

p(X:j):%Vj:l,..,K

where C is a non-negative constant.
The probability ¢; that a requested object is hosted in class i servers is then given by:

d
qlzzp(X:j), and
i=1

4.1.2 Random Policy

With this policy, the CDN does not take into account the object popularities. Each object is
uniformly and independently placed among the different classes. If we consider just two classes of
servers and if d objects are stored in class 1 servers then:

K—d
K

d
q1:7andq2:
\

4.2 Cost of the servers

We split the cost of a server into two terms. The acquisition cost plus the maintenance cost of a
class ¢ server is given by a constant ;. Moreover, we assume that the servers cost depends on the
capacity; therefore, on the potential number of hosted objects. For each object stored in class i
servers, we add a constant cost ;. The global cost of a server of class ¢ is then:

a; = + d; 3,

where d; is the number of objects stored by the servers of class i.

4.3 Numerical results for the heterogeneous server case

With the structure of the extended cost function, the parameter p; for each server class can be
optimized separately. Therefore, we do not measure the impact of the parameters o nor m for this
cost function since the results are similar to those presented in Section 3.3. We evaluate here the
impact of the parameters of the two policies on the cost functions and on the optimal number of
servers. We also compare both policies. In the rest of the paper, we assume that the total number
of objects is equal to 1000 (K = 1000).

4.3.1 Impact of the number of objects hosted in class 1 servers

In Figures 7(a) and 7(b), we show the impact of d on the optimal values p;, pa (the optimal
proportions for the servers of class 1 and 2) and on the cost for the random policy. For these
numerical cases, the parameters are v; = v = 600, §; = 2 = 1 and m = 300. Since the
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servers cost parameters are equal for the two classes, for a random policy, the cost function and
the optimal values p; and py are symmetric. The best placement of the objects consists in placing
all the objects in the same class of servers. This minimize the number of servers and then the
acquisition part of the cost ; the rest of the cost function being insensitive to the placement policy
in this model.

In Figures 8(a) and 8(b), we plot the optimal values of pi, ps and the corresponding cost
function for the popular policy and for the same parameters than in the random policy. The best
placement of the objects among the two classes is still the placement of all the objects in the same
server class (see Figure 9 which is a zoom of Figure 8(b) around d = 0). Positive very small values
of d represent a bad case since a lot of class one servers have to be deployed and the fix part of
the server cost increases much more than the decrease of the second term of the cost function.

We conclude that when the servers cost parameters are identical for the different classes, the
optimal 1s to have just one class. We observe that the curves are very asymetric in this case.

We analyze now the impact of the asymmetry of the servers cost parameters on the optima.
We consider a first class of servers, less expensive than the second class, but with a limited storage
capacity, and thus, where the storage cost is greater. We take the following parameters : v; = 300,
v2 = 600, 51 = 1, B2 = 0.5 and m = 300. For the random policy, the cost function at the optimal
1s asymmetric, but the optimal is still reached for all the objects placed in the servers of the same
class (class 2 in this case), as illustrated in Figure 10(a) and 10(b).

When a popular policy is used, there is minimum and a maximum of the cost function as a
function of d, as shown in Figure 11(a). The optimal configuration consists in placing the 150
most popular objects in the class 1 servers. As illustrated in Figure 11(b), at the optima for d the
number of ASes that must be deployed is about 360.

After simple computations we obtained that class 1 servers are in charge of approximately 75%
of the requests from the users. The number of servers of class 2 1s smaller, about 160. These
servers are in charge of just 25% of the requests and they store 85% of the objects for a limited
cost, indeed a small number of class 2 servers is deployed and the storage cost of these servers is
smaller (y2 = 4). But this does not penalize significantly the QoS since only the most unpopular
objects are hosted in this class of servers.

We observe that there is also a worst case for the placement of the objects among the two
classes for d = 780. In this case, the servers of class 1 respond to 96% of the requests, which
require a great cost of storage. Moreover, servers of class 2, which have an expensive acquisition
cost, must be deployed for just 4% of the requests.



4.3.2 Comparison of the two policies of placement

We compare the two policies in order to evaluate the gain to use the popular policy. In Figure
12(a), the costs at the optima are shown. The cost of the random policy is slightly greater than
the cost of the popular policy. But, if we consider the number of servers of class 1, represented in
Figure 12(b), we note that this number is more important for the popular policy. As explained in
the previous Section, a great number of servers of class 1 will be in charge of 75% of the requests,
providing a good QoS for these requests. A small number of servers of class 2, more expensive but
with cheaper storage cost, hosted the 85% of the unpopular document, whereas a great number
of these expensive servers is required if the random policy is used. The global QoS perceived by
the users is approximately the same for both policies as illustrated in Figure 13(a) where we have
plot the cost function without the server costs. The benefit between the two policies is due to the
server costs as shown in Figure 13(b). The server costs are 12% — 40% more expensive for the
random policy.

So, the important conclusion is that, for the same QoS level, a CDN implementing a placement
policy based on popularity generates a cheaper network in terms of acquisition and management
costs.

5 Conclusion

In this paper, we have addressed the CDN server placement optimization problem. The innovative
modeling approach we proposed allows to formulate the aforementioned optimization problem using
realistic cost functions with a reduced number of parameters which do not depends on the size of
the network. The approach thus scales for large networks.

More precisely, the involved parameters are the intensity of a point process used to model the
ASes of the Internet, the mean number of requests per unit time per AS, the servers cost and a
function which represents the QoS perceived by the users. We obtained the optimal number of
ASes where a CDN server must be deployed and the impact of the number of requests and of the
servers cost on the optima.

We have modeled and analyzed the cases of homogeneous and heterogeneous servers. In the
second case, different policies for object placement among the server classes can be studied with
our model. As an example, we compared two particular policies. The first one is based on the
object popularity and the second one consists in randomly placing the objects among the server
classes. The popular policy proved to be more efficient than the random one. We highlighted that
for the popular policy, it exists an optimal repartition of the objects among the server classes that
minimizes the global cost.

This work is being enhanced and extended in two directions. First, we are evaluating more
precisely the distribution of the number of BGP hops between the ASes. Second, we are including
in the cost function a term that represents the cost of distributing and updating the content to
the surrogates.

A  Appendix : Computation of the cost function

In this section, we present the complete computation of the cost function for the homogeneous
server case. The computation for the heterogeneous case is almost the same and requires a more
complicated notation, so it is not presented here for the sake of clarity. The reader interested in
these computations (as well as in a more detailed presentation of the computations for the homo-
geneous case) can see [18]. For an introduction to the stochastic geometry and for a presentation
of the different formulae used in this Appendix, the reader may see [12] and [13].

The cost function introduced in Section 3:



C’ost:E[ Z a] —|—E[ Z myf(zy)] ,
(0,R)

zENLNB(o, yeENNB(o,R)

can be rewritten as

Cost = [/ (0, R)aN, (du ] +E

/oR/ ol (ly = =) N (d )Np(dx)],

Since « is a constant, we have for the first term of the cost :

E [/B(o, R)osz(da:)] =\ mR%a

For the second term of the cost, since N = N, + N;_,

2| Sy oy ™! = Mot | =5 [ (OVR)myﬂowp(dy)]

/OR/ myf (ly — ) Ni—p(dy) p(dx)]

The marks m, are i.1.d., thus,

E

/B( o myf(O)Np(dy)] = Apr R*mf(0)

For the other term, we have,

/V my £ (19ll) Na—p (dy)de

D

/OR/ (= #l) M-y (d) p<dx>] = Ap/B@,R)E

= A1-p) /B o B, b (170 e

M1 = p)e R*mER, _, [f ([ Zo]])] der

The first equality 1s obtained by Campbell’s formula, the second is the application of the Neveu’s
exchange formula. FEy, [] 1s the expectation under the Palm measure with respect to the point
process Ni_, and Z; 1s the point of N, which is the closest to the origin of the plane.

The point processes N, and N;_, bemg independent, we have,

B, [FUZ60D] = ELA(IZ0])]
= [/ 12D Ly, (o izl =0y Np (d2)
= [ TR PR, (6 (B (=5 el = 0) dz
= v [ 1l expt=dprla|P )z

+oo
= /\p27r/ rf (r) exp {—=Aprr?}dr
0
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The equalities are obtained from Campbell’s Formula and Slyvniak’s theorem.
In the case where f(0) = 0, as in the example studied in this paper, we obtained :

+oo
Cost = AnR? |pa+ (1 — p)ﬁx\p?ﬂ'/ rf (r)exp {=Apmr?dr| .
0
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