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Abstract—We propose a short overview of models and be applied, in some cases, to more general wireless
results based on spatial models used to evaluate thenetworks [16].
performance of ad hoc networks. Locations of nodes are In this paper, we propose a short overview of models
distributed in a two dimensional area according to a d Its b ' d il dels. We fi .
stochastic point process, which allows us to obtain the aver- &N resu ts base X on spatial mode S'. € 'rSt_ present, in
ages and distributions of different performance quantities. Section Il, two point processes. The first one is the clas-
It is particularly suited in the context of ad hoc networks  sical Poisson point process and the second is the&idat
as the topology has an important impact on performance. point process. In Section |II, we study a link model, for
gpoep;'t'?:srezgnmggﬁbﬁtypfnsjgfﬁags Jfgéeﬁoéong‘&gﬁ(‘i'o which link properties (interferenc&INR FER etc.) are

' _ _ " calculated. In the next two sections, Section$ IV and V,

Index Terms—Spatial model, point processes, ad hoc we sketch the main results for connectivity and capacity

networks. in ad hoc networks. We conclude in Section VI.

I. INTRODUCTION II. POINT PROCESSES

Wireless networks and communication have wite- In this Section, we present two examples of point
nessed phenomenal growth in recent years. It has bggtcesses which can be used to model locations of the
one of the fastest growing segments of the communicaedes of an ad hoc network. We are interested in point
tions industry, surpassing wired communications in marpftocesses distributed ifR2. We begin with the most
domains. The performance evaluation of these networémmonly used point process, the Poisson point process.
is thus fundamental. While geographical aspects of wirgdhas been used extensively in the modeling of ad hoc
networks do not play an important role in performanceyetworks, to model interference and radio properties [3]-
the location of the nodes has a great impact in ad h{g], [17], [26], to study the connectivity or capacity of
networks. For instance, if the density of nodes is smalid hoc networks [8], [9], [15], etc. One of the definitions
interference should be small as there are only a fewl the homogeneous Poisson Point process is as follows:
emitters, increasing the radio scope of the nodes. On the

other hand, a longer distance between the nodes shoBfgfinition 1. A homogeneous Poisson point process
limit the connectivity. Moreover, even for small intensity Intensity A is characterized by two properties. They

interference may be high if a set of emitting nodes afd®:

gathered in the region where we measure interferences The number of points ¢b in a bounded Borel set
All these phenomena are thus difficult to understand B has a Poisson distribution of meaxjB|, where
as they depends greatly on the spatial distribution of |B| is the Lebesgue measure Bfin IR?.

nodes. Static topologies, such as grids, and simulationss The numbers of points @f in k disjoint borel sets
that take into account a finite set of topologies are form £ independent random variables.
inaccurate. They consider only specific patterns and do

: A sample of a Poisson point process is shown in Fig-
not garantee that the results obtained hold for Othﬁfe@). We can also consider inhomogeneous Poisson

patterns. Stochastic point processes are thus partuzularomt process. As the name indicates, the mean number

suited to the performance evaluation of ad hoc networIPsf ; . ) .
Of points in a given area depends on the location of

T_hey allow us to obtain averages and distributions f%is area. More precisely, the definition of the inhomo-
different quantities related to the performance of the

networks. These statistical quantities are based on %%neous POiSSOD point process is the same as definition 1,
o : . xcept that the first assertion is changed to

infinite number of topologies (the samples). Another o _

benefit is in describing statistical geographical properti ¢ the number of points in a Borel sé has a Poisson
with a few parameters (for example, we use only one distribution of meamA(B), whereA is an intensity
parameter for the Poisson point process), leading to Measure.

simpler interpretations of the results. It is worth notingn Figure 1(b), we draw a sample of such a process with

that the results obtained for ad hoc networks may al¢lee intensity measure
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(a) Homogeneous Poisson point process. (b) Inhomogeneous Poisson point pro- (c) Matern point process.
cess.

Fig. 1. Samples of point processes.

does not contain other points df with marks smaller
A(B) :/ cos(||x|))dx than m_. Formally,
B

While the Poisson point process is suitable for mod;
eling all the nodes of an ad hoc network, and ca%M = {z € @stm(z) <mly)Vy € @Bz R\{H
thus be used to evaluate the capacity, connectivity andThis point process leads to more regular patterns as
performances of routing protocols, it should not be usezhn be seen in Figufe 1(c).

systematically to study radio properties, such as interfer

ence, Signal to Interference-plus-Noise Ra8tNR), Bit I1l. LINK MODEL
Error Rate BER), etc. Indeed, all these quantities depend |, this Section, we present a radio model based on

on interference, and interference at a given_ time doe_s RRE Poisson point process. The model is very general as
depend on all the nodes but only on the emitter locationg 4 pe used for infrastructure-based wireless networks
The Poisson point process is not always suitable fgf,q 59 hoc networks. It has been presented in [2] and [4].
modeling these emitters, as it supposes, in some way, the proofs and computations details can be found in

they are independently distributed. However, in practicgyase two articles.

most of the radio technologies (802.11, 802.15.4, €tC.) The model involves considering a homogeneous Pois-
use CSMA/CA medium acess protocol, which consistgg, point proces® of intensity A to model emitter

for a potential emitter, in listening to the channel beforg,c4iions at a given time. In order to consider a particular
emitting. If the interference level is greater than a givefl,k we add two other points to the point process.

threshold, the channel is presumed busy and the traf$je first one, located at the origi@, is the receiver.

mission is delayed. Otherwise the emitter transmits it§,o second one, located at a distancty| from the
frame. This mechanism leads to a distribution of em'ttebgrigin is the emitter. In the following, the different radio

that is more correlated .than Poisson p'oint processe:s.pmpertieS are related to the link between these two
An example of a point process which captures thﬁoints.

phenomenon is the Main point process. It was origi-

nally presented in [20]. A more accessible presentati% Interference

of this point process can also be found in [25]. It belongs’ i ) o )

to the family of hard core point processes, where the Interferenc_e is one of the major quantities involved in
points are forbidden to lie closer together than a certafi€ computations of link properties suBiNR BERand
minimum distanceh. In our case, the inhibition distanceth€ Frame Error Ratd=ER). Under certain assumptions,

h can be interpreted as the distance at which a potentigf interfence at a given location can be considered as
emitter detects the emission from a neighbor. Below the sum of all of the signals from all of the emitters. Let

the definition of the Mairn point process. Is(x) be the interference at. I5(x) is defined as
Definition 2. Let ® be a homogeneous Poisson point

process of intensit)\. We associate to each pointof Ip(z) =Y S.A(lz - 2|) (1)
®, a markm, uniformly distributed in[0, 1]. The points S

of the Maérn point process are the pointsof ® such where S, is the emission power fronx and [(.)
that the ball B(z,h) centered atz and with radiush is the attenuation function. The sequenG®).co is
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Fig. 2. Interference and FER.

a sequence of positive random variables. It allows wghich models the CSMA/CA protocol, results may be
to take into account radio phenomenae such as fadimgry different. For low intensity, interference distri-
and shadowing. The probability density function of thbutions are similar for the two point processes. But
interference cannot easily be computed. Neverthele$s; higher intensity, there is a significant difference.
due to the nature of the Poisson point process, we c@he intensity of the Matrn point process is bound by
compute its Laplace transform: L, limiting the interference level compared to the

Th2?

Poisson point process. Another difference is the tail of

- ola(x) interferencepdf, which is heavier for the Poisson point
Liz@(s) = E [e } process as we can have several emitters very close to the
points where we measure interference. For theéviat
= E lH eSSzl(lwzl)] (2) the inhibition distance between the emitters limits the
zED number of emitters in the neighborhood. The properties

Under certain assumptions ¢h and!(.) given in [4], of interfergncg based on Manh point processes have
the right hand side of equation 2 can be computef€en studied in [23] and [1].
We use the generating functional of the Poisson point
process (see [25] for more details), leading to B. FER

The computation of the Frame Error RateER), is
Liy(s) = e 2 [ (1=E[e7"* ™ ])udu () often based on th&INR We define the SINR for a

) ) ) ~_ transmission fromy to the originO as
where S is a random variable with the same distribu-

tion as the family(S.). We can then use Laplace inver- Sty
sion techniques to obtain the probability density function SINR = ——————
(pdf) of the interference numerically. In Figure 2(a), we W +12(0)
plotted the interferencedf for different radio environ-  whereW represents the noisé. is the signal power
ment. We considered as the product of two randomfor an emission fromy to O. It follows the same
variables S;, and F, respectively modelinghadowing distribution as the sequengs.).cs. v is a factor that
andfading S), follows a log-normal distribution whereasallows to fine-tune the effect of transmission from the
F follows a gamma distribution [24]. We observe thaother emitters on the interference. There are different
the distribution always presents the same form: a peaRproaches for computing the probability of a frame
and a heavy tail. This observation confirms the result®t being received. For instance, we can consider that
of [12], [17], [26], where a heavy-tailed interference disa frame is not received if th8INRis less than a given
tribution is observed for Poisson distributed interferershresholdd:
Several distributions such as K-distribution, Weilbull,
logNormal or Laplacian distributions have been proposed
to model or extrapolate this heavy-tailed distribution. FER=P(SINR <) “)
More recently, alpha-stable distributions have also beenThe quantity above cannot be analytically computed
proposed [17]. in most cases. But, it can be numerically evaluated from
These results are linked to the nature of the poitlie distribution of interference obtained by the inversion
process. For other point processes, such as thémat of the Laplace transform. Nevertheless, there is a case



where we can find a closed formula [4]. It corresponddistance between the two nodes is less than a certain
to the case wher& and (S.).co follow exponential rangeR. The second model is the Signal To Interference
distributions (with parameter) modeling aRayleigh Ratio Graph $TIRQ presented in [6]. It supposes that
fading. Under this particular assumption, equatfion 4 caa directional link exists between two nodes y) if the

be expressed with regard to the Laplace transforn® of SINRat y is smaller than a given threshofd

(given by equation 3):

FER = ]}D(SZ(”yD<9> W +71s(y)
W +112(0) wherels(y) is the interference g and.S is constant
) (5 < 9W+7W> and the same for all the nodes. The unidirectional links
[yl are ignored, therefore a link exists in the STIRG graph
— F [e—awl*(ﬂf)@} if both links (z,y) and (y, z) fulfill the condition given
by equation 5.
1~y uo In Figures 3(d), 3(b) and 3(c), we plotted the boolean

LI‘P(O)(Z(Hy”)) W(l(||y||)) model andSTIRG graphs for the same sample of the

In Figure 20, v ploted the probabity that 1500 DO proces anc s dfeent vluesiolt
receiver at the origin receives the frameHER) when | . .
the distance betv?ee[g and O varies (|y|‘|~\’| :) rin I takes into account interference generated by the other

the figures). We considered two distributions &k nodes. . o
the degenerate distributionS (= constant) and the In the next two Sections, we distinguish two ap-

exponential distribution. We also considered the casB&oaches: the case where the nodes are distributed in

where~ — 0 and wherey — 1. For v — 0, interference the whole plane, and the case where they are distributed
’ ip a finite area.

is not taken into account. A frame is then received f
P(SNR > 6). The casey = 1 supposes that all the
emitters emit on the same channel. All the power tranZ- The infinite case

missions from other emitters are then taken into account

in the SINR S = constant and vy = 0, corresponds In the case where the point process is distributed in
to the simplest case: — FER = 1 until % reaches IR?, it does not make sense to compute the probability
0, thenl — FER = 0. When~ = 1, the interference of the graph being connex. Indeed, this probability is
penalizes the value of theINRand1 — FFEER becomes always nil as there is always a positive probability of
smaller. WhenS' is exponentially distributed, the curvea node being isolated. The study of connectivty is then
decreases slowly from to 0. The probability that the related to the existence of an infinite component, i.e. a
frame is lost may be not negligeable, even if the distancennex subgraph with an infinite number of nodes, rather
between the emitter and the receiver is small, whildan the full connectivity in the whole graph.

the probability of the frame being received is positive The study of such a component is linked to percolation
even when the distances are great. A more detailéitbory. A reference book on percolation for the boolean

presentation of these results can be found in [5]. model is [21]. For this model, it has been shown that
there is a critical intensity\. (for a given range) for
IV. CONNECTIVITY which the infinite component exists with a positive

The study of connectivity is related to the study of g@robability. When\ < ., it is the subcritical phase
graph(E, V), where the verteX/ are the nodes of the where the infinite component exists with probability
ad hoc network, and where the edgBsare the links In the supercritical phase (when> \.) the probability
between the nodes. Except where otherwise stated, @fethe existence of an infinite component is strictly
suppose that node locations are represented by a Poisgogitive and, is unique when it exists. For discrete perco-
point proces® with intensity \. We say that the newtork lation (see [13]) the critical value has been analytically
is connected or connex, if and only if there is a pathomputed, but there are only numerical evaluations or
between all the pairgz,y) € V2, i.e. between all the analytical bound for the continuum case [18].
pairs of nodes. A path between two nodasy) is a For the STIRG model, the authors of [6] tried to find
finite sequence of nodes:;),=o,.. n Such thatro = =, similar results. In the STIRG model, when the intensity
xn = y, and where the edges:, zp+1) € E for all of the underlying Poisson point process increases, it does
k=0,..,N—1. not improve the connectivity as it leads to a greater

The radio model has an important impact on conneaiterference level. However, they show thathif> A,
tivity as it defines when there is an edge between twa critical value of~. exists for which the graph is
nodes. We consider here two kinds of radio models. gubcritical (fory < ~.) and supercritical (fory > ~.).
simplistic model, called the Boolean model, suppose th@ihe existence of this critical value is discussed in [6],
there is a link between two nodes if and only if thg7], [10], and depends on the attenuation functi¢n.



‘\ AN \\ _ /A/
) | 2N
I£X: \ % N
| = J .
‘\ \ \’ 1 A ]
AN DN \
(a) Boolean graph. (b) STIRG with6# = 2.0. (c) STIRG with6 = 5.0.
Fig. 3. Connectivity graphs.
B. The finite case often called throughput per node or feasible throughput,

In the case where the point process is disitributed #d denoted:(n), is then defined as the mean number
a finite area, the approach is different. The observatih Pits per second that a node is able to transmit to its
windows where the nodes are distributed are generallyfgstination. This capacity must be obtained for all the

ball or a square of unit area.nodes are then uniformly Pairs (source-receiver). .
distributed in this area. The model used to set up the links between the

For the boolean model, instead of the infinite cas80des is similar to the STIRG model. We shall assume

the probability of having the graph fully connected i§hat there is a link between two nodes if t8NRis
positive. But if the radio range is less than the diametéf€ater than a given thershoid The first major result
of the observation window, the probability of the grapl®" capacity, given in [15], states that the capacity is

not being connex is also positive whatever the value 6} ﬁ) andQ (—=—).

n. Ir_1dee_d, the probabi_li_ty of a node being isolated (_vv_ith c(n) = Q + if there is a constant such that
no link) is always positive. As a result, the connectivity Vnlogn

for the finite case is also considered as an asymptotic ) 1

property. It consists in studying the tradeoff between the HEI}}WP c(n) = /nlogn = (6)

radio range and the number of nodeswagnds to infin- hi It ai | bound h hievabl
ity to get a fully connected graph. The most important This result gives a lower bound on t ? a(.: |.eva €
result is presented in [14]. The authors show that if tfroughput. The other result(n) = O (ﬁ) is similar
radio rangeR(n) verifies mR%(n) = M with  to formulal 6, but gives an upper bound on the capacity.
lim, 400 ¢(n) = 400, then the graph is asymptotically To prove the lower bound, the authors built a routing
connex (lmn—>+oop(the graph is fu”y Connected — mechanism and a TDMA scheme, which allows each
1). node to reach this capacity. For the upper bound, they
For the STIRG model, it has been proposed in [6] t8howed that an inhibition radius exists around each emit-

transpose the results of the infinite graph to the finifér- A transmission in this area from another emitter will

one. make the reception impossible. Therefore, it bounds the
number of simultaneous emitters and thus the capacity.

V. CAPACITY A natural question arises. Is the upper bound given

Capacity plays an important role in the performanc@y Gupta et. al achievable or not? In [11], the authors

evaluation of ad hoc networks as it limits the applicatiora'oWed that, for a particular attenuation function, the
which can be used, the number of nodes for a givétPPer bound is also a lower bour(d:(n) =Q gﬁ))
application, etc. The very famous paper which addressA& above, they prove it by building a particular routing
the problem of capacity for the first time is [15]. Numerscheme. A certain number of "highways”, made up
ous papers followed with more elaborate radio assum@f connected sets of nodes and crossing the network
tions, but the definition of capacity and point processéwrizontally, are used to transport all traffic from all of
used to model node locations still remain the same. THee sources. These highways are then the bottleneck of
observation window is a ball of unit area, denofédWe the network. Each highway is built in such a way that the
considem nodes distributed uniformly il3. We suppose capacity of each highway is constant, and is responsible
that each node is a source emitting to another no@ carrying the traffic of,/n nodes. This construction
randomly chosen among the other nodes. The capaclgads to a feasible throughput pr0p0rti0na|§%.



It is worth noting that all these results hold for a par-[3]

ticular family of attenuation functior(u) = u~=%e~ %

with a > 2 anda > 0. These functions tends to infinity 4
as the distance tends to0. As a consequence, there is

always a distance between the source and the receiver for
which the transmission will succeed whatever the inter=

5]

ference level. Moreover, close interferers can drasticall
increase interference. So, depending on the point procefé?
intensity, this attenuation function increases or de@®as
the connectivity compare with a more realistic attenua-

tion function with the formi(u) = min (1,2~ %e~**).
The effects of the attenuation function on capacity
discussed in [10].

In these radio models, the link exists if tI®ENRIs
greater thard. The transmissions on these links are th

[7]
is
(8]

en

supposed to be systematically successful. For a moie]

realistic radio model, given that, whatever the value

of

the SINR transmission errors are always possible, theg

results on capacity change drastically. In [22], the awgh

or

show that this assumption decreases the capacity. TIF
0

found an upper bound on the capacity proportional

& (c(n)

O (%)). For other ad hoc networks, such as
Vehicular Ad-hoc NETworks\{ANET), where the nodes
are vehicles moving on a road or a highway, the previous

[12]

models cannot be used. Indeed, the toplogy is more a
set of nodes distributed on a straight line than in a twq%}%

dimensional area. These chains of nodes are particul

penalizing for capacity, which is found proportional to

1 (see [19)).

VI. CONCLUSION

[15]

(16]

We have presented a brief overview of spatial models
for the performance evaluation of ad hoc networks.

The use of the point processes allows us to estimate
the performances of these networks. Spatial modelirig

proved to be a powerful tool for modeling ad hoc
networks. It allows us to understand the effects of tHégl

different parameters on performance, and to observe
behavior of these networks on different scales.

In addition to link properties such as interferenc
SINRandFER, we have presented results on connectivi

and capacity. All analytical results of these aspects

asymptotic results. They give qualitative results on t

behavior of ad hoc networks, and can be used as app

s,

20]
am]

521
rox-

imations for their dimensioning. But most of the existing

models cannot be used as fine grain dimensioning to
Additional work is still necessary to take into accou

digll

nt

more realistic radio assumptions and point processes.
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