
1

Conflict graph-based Markovian model to estimate
throughput in unsaturated IEEE 802.11 networks

Marija STOJANOVA Thomas BEGIN Anthony BUSSON
marija.stojanova@ens-lyon.fr thomas.begin@ens-lyon.fr anthony.busson@ens-lyon.fr
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Abstract—WLANs (Wireless Local Area Networks) have be-
come ubiquitous in our everyday life, and are mostly based on
IEEE 802.11 standards. In this paper, we consider the perfor-
mance evaluation of an arbitrary-topology unsaturated network
based on the IEEE 802.11 DCF. We present a conflict graph-
based modeling approach to discover the attainable throughput
of each node. Our model consists of a single Markov chain which
aims at describing, at a high-level of abstraction, the current
state of the entire wireless network. Owing to its low complexity,
our approach is simple to implement, can cope with medium
sized networks, and its execution speed is fast. We validate
its accuracy against a discrete-event simulator. Results show
that our approach is typically accurate, with associated relative
errors generally less than 15%, and that it captures complex
phenomena such as node starvation. We investigate two potential
applications of our proposed approach in which, starting with a
given network, we improve its performance in terms of overall
throughput or fairness by throttling the throughput demand of
a node, or by turning a node off altogether.

I. INTRODUCTION

WLANs (Wireless Local Area Networks) have become
ubiquitous in our everyday life. Internet service providers
increasingly employ WLANs to connect users to their network.
WLANs are also widespread in airports, train stations, shop-
ping malls, and cities that offer wireless Internet access to their
customers. Most WLANs are based on IEEE 802.11 standards.
Despite continuous improvements of 802.11 and amendments
in its subsequent versions, 802.11-based networks typically
feature transmission ranges and data rates that may both be
deemed small given the soaring amount of end-users.

These concerns have been largely accommodated by net-
work densification, which refers to the deployment of more
APs (Access Points) per unit of area. By doing so, WLANs
have improved their spatial reuse of the spectrum, as well
as their their transmission rate. However, the management of
what used to be a single AP with a few users has become much
more complex. WLANs with several APs and tens of users are
prone to misconfiguration and poor coordination between APs.
Possible effects include inefficient use of the WLAN radio
resources, poor overall WLAN performance, and unfairness
among users.

Nowadays, WLANs with several APs are increasingly cen-
trally managed to allow for a better use of their resources
(e.g., channel allocation, assigning users to the APs, authenti-
cation). Besides proprietary solutions, standardized protocols

like IETF’s CAPWAP and IEEE 802.11v have been devel-
opped. These latter enable the exchange of information about
the network topology and radio environment (within a WLAN)
either from APs to a central controller, in the case of CAPWAP,
or between users and APs, in 802.11v. However, the algorithms
run by the controller and APs, and exploiting this knowledge,
are yet to be designed. Their objectives are diverse and can
range from estimating the actual throughput of APs given the
network topology to reshuffling the channel allocation scheme.
Note that the design of efficient algorithms must cope with
the complexity brought by the CSMA/CA scheme used in
the 802.11 MAC layer (e.g., random backoff, hidden node
problem, starvation).

In this paper, we propose a Markovian, conceptually simple,
and computationally efficient modeling approach to discover
the behavior of each AP within a WLAN. More specifically,
our approach returns an accurate estimation of the output rate
(attainable throughput) of each AP given their respective load
and the WLAN topology (conflict graph). The outcomes of
our approach are manifold: gaining insight into an abnormal
WLAN behavior, predicting WLAN performance under new
settings, or reconfiguring an existing WLAN. We illustrate two
possible applications where we rely on our model to make a
better use of WLAN resources.

The rest of this paper is organized as follows. The next
section briefly reviews the existing related works. Section 3
describes the system under study. The proposed modeling ap-
proach and the associate algorithm are presented in Section 4.
Numerical results validating our approach and illustrating pos-
sible applications are discussed in Section 5. Finally, Section 6
concludes this paper.

II. STATE OF THE ART

In the last two decades, the performance analysis of the
Distributed Coordination Function (DCF) used in IEEE 802.11
wireless networks has been an often revisited topic. Two of the
pioneering papers in the field are the works of Bianchi [1] and
Cali, Conti, and Gregori [2]. Both of them model the network
at a very fine level of abstraction, taking into account the
behavior of each individual packet transmission according to
the CSMA/CA principles. In [2], the authors study the ratio of
the average packet size and the average time it takes to transmit
a packet, including all the protocol overhead. They apply this
approach to study the utilization of the network’s capacity
for different numbers of contending stations and packet sizes.
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Bianchi [1] introduces a two dimensional Markov chain to
explicitly model the backoff process happening before each
transmission of a packet in DCF in a fully-connected network
(in which at most one node can be transmitting at a given
time). A common property of these two models is that they
were designed to handle only saturated networks. In a saturated
network, all nodes have a packet waiting to be sent at all times,
i.e., they have backlogged queues. Although saturation is a
strong and often limiting assumption, these two works provide
some of the ground research in the evaluation of wireless
networks.

Bianchi’s work has since been extended to non-saturated
networks using a few different methods. Felemban and
Ekici [3] have removed the condition of saturation by intro-
ducing the probability that a node has a packet waiting to be
sent. To this aim, they create a second Markov chain, which
is embedded into Bianchi’s original chain [1]. This embedded
chain describes the current state of the channel, which can
be either idle, in collision, or in successful transmission. The
solution to their model is found by successively iterating
between the two chains. Upon convergence, the found solution
delivers the steady state transmission probability for each
node, which can then be used to evaluate the network’s
performance.

A different approach for relaxing the saturation constraint
is given in [4] and [5], where a new state is added to
Bianchi’s Markov chain in order to represent a node that
has an empty buffer. Similarly to Bianchi’s original work, the
scope of application for these two models is restricted to fully-
connected networks. Note that Kosek-Szott’s model [4] can
also be used when users have heterogeneous traffic demands,
creating a coexistence of low and high traffic densities inside
the network.

In all these works, a fine-grained point of view of the
network was taken, with a detailed description of each node.
Another approach consists in evaluating the performance of a
network from a higher level of abstraction. Two such models,
that address non-saturated, multi-hop networks, are given
in [6] and [7]. In a multi-hop network, a packet from node A
travels across relay nodes before arriving at its destination
node B (as opposed to single-hop networks, where A and B di-
rectly exchange packets). Both papers present two-level mod-
eling approaches of unsaturated multi-hop wireless networks,
in which the low-level model is a version of Bianchi’s original
Markov chain, while the high-level model aims at capturing
the inter-node dependencies in the network. The solution to the
overall model is found using a fixed-point iteration between
the high and low levels. In [7], the high-level model consists of
a set of M/M/1/K queues, where each queue represents a given
node of the network. Although their modeling framework was
designed to handle any number of nodes, examples shown
in their paper involve multi-hop wireless paths with at most
4 nodes. In [6], the high-level model is a separate Markov
chain describing the channel’s behavior depending on the
current states of neighboring nodes, with nodes being either
idle, transmitting, or in backoff. Because of the three possible
states for each node and the added complexity brought by
multi-hop networks, the analytical model of [6] leads to a

large state space as the number of nodes increases, making
it intractable, for networks with more than 7 or 8 nodes, for
which a decomposition into smaller networks is necessary.

In [8]–[10], Markov chains are used to model an entire
network based on its topology. The states of the chain describe
the set of nodes that are transmitting in the current network
state. Nardeli and Knightly [8] rely on their proposed Markov
chain to derive a model that takes into account the errors due
to collisions and hidden terminals for a single-hop network.
They come up with a closed-form multi-parameter expression
of throughput, which is subsequently used for evaluating the
performance of the considered network. Although the model
accurately captures the behavior of CSMA/CA networks,
it only deals with saturated networks and introduces some
complexity due to the calculation of successful transmission
probability. In [9], a similar Markov chain is used to evaluate
the fairness and spatial reuse in multi-hop, saturated networks
with different carrier sensing and reception ranges. More
particularly, the authors study the spatial reuse in line-networks
to show that CSMA/CA achieves maximal spatial reutilization
as traffic intensity increases, at the cost of creating starvation
in certain links. In [11], [12] CSMA/CA networks are modeled
as continuous time Markov chains and the model is then used
to study the fairness of the network. Jiang and Walrand [10]
extend the usage of this model by proposing an adaptive
solution that changes the nodes’ backoff periods in the goal
of maximizing the network’s throughput and utilization.

A novel approach to modeling a non-saturated network is
introduced in [13] and [14], where the authors have chosen to
map the idle time of a node to a longer backoff period. This
approach keeps the simplicity of a saturated network model by
not explicitly representing idle states, and yet allows the study
of unsaturated nodes. Laufer and Kleinrock [13] determine the
throughput of a node in a CSMA/CA network using the ratio
between the transmitting and the backoff periods of that node,
its probability of successful transmission, and the channel
capacity. The result is then used in the analysis of a network’s
capacity region, based on nodes’ throughputs, under stability
conditions. Bonald and Feuillet [15] also characterize both
the capacity region and the stability of a wireless network.
However, their work focuses on multi-channel networks in
either ad-hoc or infrastructure mode, and they propose a
refinement to CSMA to achieve a more efficient and fair access
to the channel in the infrastructure mode.

In this paper, we study unsaturated, not fully-connected,
single-hop IEEE 802.11 wireless networks. We present a con-
flict graph-based modeling approach to discover the attainable
throughput of each node. Our model consists of a single
Markov chain which aims at describing, at a high-level of
abstraction, the current state of the entire wireless network.
Unlike most existing works, our approach is conceptually
and computationally simple, enabling it to easily cope with
medium sized networks.

III. SYSTEM DESCRIPTION

The considered system is a wireless network using the IEEE
802.11 DCF to access the radio channel. Nodes may represent
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APs (Access Points), or user stations in infrastructure or ad-
hoc modes. Either way, we study all nodes that belong to the
same radio channel. A node detects, but does not necessarily
successfully receive, data sent by nodes within its detection
range. Throughout this paper, we refer to two nodes that
belong to each other’s detection ranges as neighbors. For the
sake of simplicity, we assume that all nodes are sending their
packets at the same speed (i.e., transmission rate).

The network under study consists of N nodes. We use a
conflict graph to describe the interactions between the nodes.
It is a simple graph of N vertices in which an edge exists
between two vertices whenever, in the wireless network, the
corresponding nodes belong to each other’s detection ranges.
Therefore, each pair of neighbor nodes in the network is
connected by an edge in the conflict graph. Because we
consider that all nodes have the same detection range, the
edges in the conflict graph are undirected. Figure. 1 illustrates
a simple example of a conflict graph for a four-node network.

Additionally, each node i, (i = 1, . . . , N), of the network
is characterized by its input rate, denoted by xi. The input
rate refers to the node’s demanded throughput, normalized by
the link speed so that possible values for xi range from 0 to
1. We assume that all xi are mutually independent. Note that
xi can be regarded as the percentage of time node i demands
access to the channel. Because a saturated node always has a
packet waiting to be sent, its input rate is equal to 1.

Fig. 1: Conflict graph for a four-node network.

As for the performance parameters of a wireless network,
customary metrics include the end-to-end delay, the collision
and loss rates, the resource utilization, and the attainable
throughput. In this paper, we study the normalized attainable
throughput (normalized by the link speed) of each node, which
we refer to as its output rate. We let yi denote the output
rate of node i. In other words, yi expresses the percentage of
time in which node i is occupying the channel, i.e., is sending
over the channel. It follows that, for i = 1, . . . , N , yi ≤ xi.
The second performance parameter we are interested in is the
network utilization, denoted by U and calculated as:

U =

N∑
i=1

yi

Umax
, (1)

where Umax is the maximum network utilization. Otherwise
stated, Umax is simply the maximum number of nodes that
can be simultaneously sending, a quantity that clearly depends
only on the conflict graph.

Table I summarizes the notation needed to describe the stud-
ied system, along with those pertaining to its corresponding
model, presented in the next section.

N total number of nodes
vi the set of neighbors of node i, vi ⊆ {1, 2, ..., N}
wi the restricted set of neighbors of node i with synchronized,

blocked, and preempted nodes removed
S the set of possible sending states, S ⊆ {0, 1}N
Sk k-th sending state, Sk ∈ S
Sk(i) state of node i in sending state Sk , Sk(i) ∈ {0, 1}, where 1

means node i is sending
A the set of possible activity states, A = {ON,OFF}N
At

k an activity state associated to sending state Sk , At
k ∈ A

Akl the set of all activity states associated to sending state Sl and
compatible with sending state Sk

PAt
k

probability of occurrence of activity state At
k

T the set of possible transitions between sending states
Tkl transition from sending state Sk to Sl, Tkl ∈ T
Pkl probability of transition from sending state Sk to state Sl

xi input rate of i-th node, xi ∈ [0, 1]
yi output rate of i-th node, yi ∈ [0, 1]
U network utilization, U ∈ [0, 1]
π stationary probability distribution of the Markov chain that

describes the network
πSk

steady state probability of sending state Sk

TABLE I: Notation.

IV. MODELING AND ALGORITHM

A. Modeling approach
We now describe our high-level approach to modeling

a wireless network as presented in the former section. To
cope with the well-known complexity of CSMA/CA-based
networks (e.g., random backoff, hidden node problem, star-
vation), we rely on a single Markov chain, but we deal with
two intertwined state spaces, each describing differently and
approximately the current state of the network. For the purpose
of readability, we illustrate each step of our approach with an
example, whose conflict graph is depicted in Fig. 1.

Our foremost state space, denoted by S and referred to as
the sending state space, describes which nodes among the N
are currently sending, and hence occupying the channel. We
denote each sending state of S by Sk so that: S = {Sk}k≥1.
Therefore, each sending state Sk is a vector of size N in
which the i-th value, Sk(i), is set to 1 if node i is currently
sending, and to 0 otherwise. Note that, in our work, a node’s
sending period includes the data packet transmission itself, as
well as all protocol overhead (SIFS and DIFS intervals and
ACK transmission). Our objective is to derive a Markov chain
representing the possible transitions between these sending
states, to compute the probabilities of its state transitions,
i.e., its transition matrix, and finally, to derive the steady-state
probabilities of Sk.

Because we deal with an unsaturated network, we need to
introduce a secondary state space, referred to as the activity
state space and denoted by A, that describes the activity of
each node as being either ON or OFF. A node whose activity
is ON has at least one packet waiting to be sent, while an OFF
node has currently no backlogged packets. Analogously to S,
each activity state, At

k, is a vector of size N whose i-th value
denotes the activity of node i. Let PAu

l
denote the (steady-

state) probability that the activity state Au
l occurs. The mutual

independence of the nodes’ input rates xi enables us to obtain
PAu

l
as follows:

PAu
l
=

∏
Au

l (i)=ON

xi
∏

Au
l (j)=OFF

(1− xj). (2)
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Note that a sending state, Sk, can typically be associated to
one or up to T different activity states, each denoted by At

k

with t = 1, . . . , T . Indeed, whereas a sending node necessarily
implies that its activity is ON, the inverse does not hold.
A node that is not sending and has no sending neighbors
is (undoubtedly) OFF. On the other hand, if it does have a
sending neighbor, then its activity can be either ON or OFF.
This means that, when a node is not currently sending, it
can be simply because it does not have a packet to be sent,
or because it is waiting to access the channel. For example,
assuming a given sending state Sk = [ 0 1 0 1 ] for our
network of four nodes, a total of four activity states (T = 4)
may be associated:

A1
k = [ OFF ON OFF ON ]

A2
k = [ ON ON OFF ON ]

A3
k = [ OFF ON ON ON ]

A4
k = [ ON ON ON ON ]

(3)

1) Determining Sending States: An intrinsic property of
802.11-based networks is that two neighbor nodes cannot
(or virtually not) be transmitting simultaneously. In terms of
modeling, this means that a sending state of the network is
possible if and only if it does not include two transmitting
vertices connected by an edge in the conflict graph.

In the case of our sample network represented in Fig. 1,
out of a total of 16 sending states, only the following seven
remain possible for the purpose of our modeling approach:

S1 = [ 1 0 0 1 ] S5 = [ 0 1 0 0 ]

S2 = [ 0 1 0 1 ] S6 = [ 0 0 0 1 ]

S3 = [ 0 0 1 0 ] S7 = [ 0 0 0 0 ]

S4 = [ 1 0 0 0 ]

(4)

2) Establishing Possible Transitions: Having defined the
set of possible sending states, Sk, we need to decide when we
allow a transition from a possible sending state, Sk, to another,
Sl. This transition represents the fact that the network goes
from state Sk to Sl upon a packet-sending completion. We
apply a three-rule policy to determine if the transition from
Sk to Sl is possible.

First, at most one element of Sk changes its value from 1
to 0 in Sl. This rule expresses that no more than one node
stops sending at the same time (i.e., upon a change of state in
the Markov chain). Considering our sample network, positive
examples include transitions from S1 to S2 and from S1 to
S4. Conversely, a negative example is the transition from S1

to S3.
Second, at most one element of Sk changes its value from 0

to 1 in Sl, unless in the exception case of a synchronizing node.
A node i is said to be synchronizing if (i) it was sending in
state Sk (i.e., Sk(i) = 1), and (ii) it has at least two neighbors
that have an ON activity but are not neighbors themselves. The
exception allows to account for the situation where a central
node’s end of sending triggers the beginnings of sending of
several of its neighbor nodes. Said differently, in a case with
two nodes, labeled m and n, and assuming that they have a
common neighbor node i for which Sk(i) = 1 and Sl(i) =
0, we allow the transition from Sk to Sl even if we have

Sk(m) = Sk(n) = 0 and Sl(m) = Sl(n) = 1. Apart from
this exception, this second rule implies that no more than one
node starts sending at the same time. In the case of our sample
network, a positive example is the transition from S4 to S1

while a negative example is the transition from S5 to S1. The
exception to the rule applies twice, namely when we allow the
transitions from S3 to S1 and from S3 to S2.

Third, considering all potential activity states {At
k} (t =

1, . . . , T ) associated to Sk and all potential activity states
{Au

l } (u = 1, . . . , U ) associated to Sl, there must be a
combination (At

k, A
u
l ) in which at most one element changes

its value from ON in At
k to OFF in Au

l or from OFF to ON.
A clear negative example is the transition from S5 to S6 (and
vice versa) since this would require two nodes, i.e., the second
and the fourth, to undergo a simultaneous change of activity.

Overall, the rationale behind these three rules resorts to the
fact that we consider as negligible the probability that two
nodes undergo simultaneous changes in their behavior (either
in terms of sending or activity).

By applying this three-rule policy, we discover all the pos-
sible transitions between the sending states, i.e., the transition
matrix, in which a value of 1 in the k-th row and l-th column
indicates that the transition from Sk to Sl is possible, and has
a value of 0 otherwise. We represent below an extract from the
7× 7 transition matrix obtained when applying the three-rule
policy on the sample four-node network:

S1 S2 S3 S4 S5 S6 S7


S1 1 1 0 1 0 1 0
...

...
...

...
...

...
...

...
S3 1 1 1 1 1 1 1
...

...
...

...
...

...
...

...

(5)

3) Computing Transition Probabilities: The next stage of
our modeling approach is to find the probabilities of each
transition. Let us consider the transition from Sk to Sl. First,
we evaluate the number of activity states associated to Sl

that are compatible with Sk. An activity state Au
l is said to

be compatible with Sk if there is at least one activity state
associated to Sk that differs by at most one ON to OFF
change (or vice versa) with Au

l . We denote by Akl the set
of activity states associated to Sl that are compatible with Sk.
For example, in our sample network, there are four activity
states associated to S1, namely:

A1
1 = [ ON OFF OFF ON ]

A2
1 = [ ON ON OFF ON ]

A3
1 = [ ON OFF ON ON ]

A4
1 = [ ON ON ON ON ]

(6)

while those associated to S2 are:

A1
2 = [ OFF ON OFF ON ]

A2
2 = [ ON ON OFF ON ]

A3
2 = [ OFF ON ON ON ]

A4
2 = [ ON ON ON ON ]

(7)
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We observe that all the activity states associated to S2 are
compatible with S1, and thus belong to the set A12, i.e., A12 =
{A1

2, A
2
2, A

3
2, A

4
2}.

Then, we simply derive the transition probability from Sk

to Sl as:

Pkl =
∑

Au
l ∈Akl

(PAu
l

∏
Sl(n)=1

1

1 +
∑

m∈vn
1ON(m)

), (8)

where vn represents the set of neighbor nodes of node n. The
sum

∑
m∈vn

1ON(m) returns an integer value equal to the number

of neighbors of node n that are ON in the activity state Au
l .

Note that Eq. (8) captures that the transition probabilities
depend both on the nodes’ input rates and the conflict graph.
For each activity state Au

l that is compatible with the transition
from the sending state Sk to Sl, we calculate the associated
transition probability by first assuming that all concerned
nodes are evenly likely to access the channel access, and then,
we weigh the obtained value by the probability of occurrence
of that activity state, PAu

l
. The term PAu

l
in Eq. (8) ensures

that the presence of a node with a high input rate will increase
the probability that the whole network is in a sending state
in which that node is sending. On the other hand, the other
term within the sum represents the fact that a node that is
well connected in the conflict graph experiences a lot of
competition for channel access, which in turn diminishes its
probability of gaining that access.

We now present two refinements to Eq. (8) that may occur,
or not, depending on the network topology. Considering a
given sending state Sk, some nodes may be viewed as blocked
or as preempted by their neighbors. To cope with these nodes,
we simply identify them and remove them from the considered
neighbors of node n, i.e., v(n), when using Eq. (8). A node
is said to be blocked when it cannot start sending because it
has two (or more) sending neighbors. For instance, node 3 is
an example of a blocked node when our sample network is in
sending state S1 = [ 1 0 0 1 ]. Indeed, it is very unlikely for
node 3 to start sending, as this would require nodes 1 and 4 to
simultaneously stop sending. Analogously, a node is said to be
preempted if it has one neighbor that is sending, and at least
one other neighbor that is ON, which itself has no sending
neighbors. This pertains to node 3 when our sample network
is in sending state S4 = [ 1 0 0 0 ] with an activity state
[ ON OFF ON ON ]. Under these circumstances, node 4 does
not need to wait for the end of node 1’s sending in order to start
sending, which in turn means node 3 is likely to be preempted.
In our modeling approach, we simply account for these nodes
by phasing them out from the actual neighborhood of node
n when considering the sending state Sk. In other words, in
Eq. (8), we replace the set of neighbor nodes of n, i.e., v(n),
by the restricted set of neighbor nodes which excludes blocked
and preempted nodes.

The other refinement refers to the case when the z-th node
of Sk is a synchronizing node (whose definition was stated in
Section IV.A.2) and continues to have an ON activity in the
next activity state Au

l associated to Sl. First, for each activity
state associated to Sl, i.e., Au

l , we estimate the probability that
the synchronizing node continues to send in Sl using:

Pzu
l
=

1

1 +
∑

m∈vz
1ON(m)

, (9)

where the sum
∑

1ON(m) returns an integer value equal to the
number of neighbors of node z that are ON in activity state Au

l .
For example, considering the sending state S3 of our sample
network, node 3 is a synchronizing node. A possible activity
state associated to S3 is [ON OFF ON ON] in which node 3
has two neighbors that are also ON (i.e., nodes 1 and 4).
Using Eq. (9), we obtain: Pzu

l
= 1

3 . The second step consists
in refining the computation of the transition probability Pkl as
follows:

Pkl =
∑

Au
l ∈Akl

(PAu
l

∏
Sl(n)=1

1

1 +
∑

m∈wn

1ON(m)
(1−1z sync.Pzu

l
)),

(10)
where 1z sync.Pzu

l
returns the probability Pzu

l
if a synchroniz-

ing node z exists in node n’s neighborhood, and 0 otherwise,
and wn denotes the restricted neighborhood of node n (without
blocked, preempted, and synchronizing nodes).

Finally, we ensure that the matrix is row-stochastic by
dividing each Pkl probability with the corresponding sum∑N

m=1 Pkm.
4) Deriving the Output Rates: Having evaluated all the

transition probabilities between the sending states, we can
easily obtain the steady-state probability of each sending
state Sk. Let us denote by the vector π = [πS1

, πS2
, ...] the

corresponding steady-state probabilities. We then evaluate the
output rate of node i by summing the steady-state probabilities
πSk

over the set of sending state Sk in which node i is sending.
Hence, we have:

yi =
∑

k; Sk(i)=1

πSk
. (11)

In our sample network, we notice that node 1’s is sending only
in sending states S1 and S4. Thus, its output rate is given by:
y1 = πS1

+ πS4
.

We conclude by briefly discussing the main approximations
involved in our modeling approach. First, in our model, we
do not allow two neighbor nodes to simultaneously access the
channel. This implies that we neglect the potential collisions,
and a fortiori their effect on the network performance. Second,
our approach relies on a homogeneous Markov chain in
which the transition probabilities are kept constant. In a real
CSMA/CA network, owing to the backoff mechanisms, nodes
do not have constant odds to access the channel. However, de-
spite these simplifying approximations, our approach provides
accurate results as discussed in the next section.

B. Algorithm

Algorithm 1
1: Sending States: Find all possible sending states:
2: S = {0, 1}N
3: for k = |S| ...1 do
4: if Sk contains two sending neighbor nodes then
5: remove Sk from S
6: end if
7: end for
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8: Activity States:
9: for Sk ∈ S do

10: Find all the activity states associated to Sk as described
in Section IV-A

11: end for
12: Blocked nodes:
13: For any node i in a network state Sk where Sk(i) = 0:
14: if ∃m,n ∈ {vi}2 s.t. Sk(m) = Sk(n) = 1 then
15: node i is a blocked node in state Sk

16: end if
17: Preempted nodes:
18: For any node i in a network state Sk and its activity state

At
k where Sk(i) = 0:

19: if ∃m,n ∈ {vi}2,m /∈ vn s.t. Sk(m) = 1 and At
k(n) =

ON and 6 ∃r ∈ vn s.t. Sk(r) = 1 then
20: node i is a preempted node in state Sk for activity

state At
k

21: end if
22: Synchronized nodes:
23: For any node i in a network state Sk where Sk(i) = 1

and an activity state At
k:

24: if ∃m,n ∈ {vi}2,m /∈ vn s.t. At
k(m) = At

k(n) = ON
then

25: node i is a synchronizing node for nodes m and n
26: end if
27: Transitions: Find the possible network state transitions
28: for k = 1... |S| ; l = 1... |S| do
29: if Sk → Sl implies more than one 1 → 0 change in

the network state then
30: transition Tkl is not possible
31: else if Sk → Sl implies more than one 0 → 1 change

in the network state except for having up to n such
changes in the n nodes synchronized by the same node
then

32: transition Tkl is not possible
33: else if there is no state Au

l compatible with Sk then
34: transition Tkl is not possible
35: else
36: transition Tkl is possible
37: end if
38: end for
39: Probabilities: Calculate all transition probabilities
40: for Tkl ∈ T do
41: Calculate activity state probabilities using (2)
42: If synchronizing nodes exist, calculate Pzu

l
using (9)

43: Calculate the probability Pkl of Tkl with (10)
44: end for
45: Normalize:

Normalize each transition probability Pkl by diving
it with the sum of all transition probabilities of transitions
leaving state Sk.

46: Solve the chain: Find the stationary distribution π of the
Markov chain created by the states in S and the transitions
in T

47: Calculate output rates: Use (11) to calculate the output
rates of all N nodes.

V. NUMERICAL RESULTS

We begin this section with a study of our model’s accuracy
in predicting output rates. Then, we present two examples of
possible applications. Throughout this section, all results were
obtained using the IEEE 802.11g standard with a link speed of
54 Mbps. All nodes have equal detection ranges and transmit
packets with a fixed size of 500 bytes.

A. Accuracy validation

We evaluate the accuracy of our model by comparing its
values with those provided by the discrete-event simulator
ns2 [16]. Every simulation point presented in the results is
the average of 20 independent simulation runs lasting 60
seconds each. The resulting confidence intervals are very
narrow so we only use the mid-point in our validation. As
for the input rates xi, we represent their intensity in the
simulator by alternating between active and inactive periods
with exponentially distributed lengths whose mean values ratio
is set to xi. In active periods the node’s queue is constantly
backlogged, while in inactive period its queue is empty and the
node is not attempting to access the channel. The throughput
obtained in simulation is then normalized by the link speed,
in order to obtain the dimensionless output rate, yi, which is
comparable with that of our model.

In our first example, we consider the four-node network of
Fig. 1. We set the input rates of nodes 1, 3, and 4 to x1 = 0.5,
x3 = 1, x4 = 0.5, respectively. On the other hand, we let the
input rate of node 2 vary from x2 = 0 (always off) to x2 = 1
(constant saturation), taking several values in that interval. We
then evaluate the output rates of nodes 1 and 2, i.e., y1 and y2,
as well as the network utilization, as delivered by the simulator
and by our model. Figure. 2 shows the corresponding results.

As expected, as the input rate of node 2, i.e., x2, grows
from 0 to 1, so does its output rate, i.e., y2, though to a lesser
extent. Because y2 < x2 (except for x2 = 0), we conclude that
node 2 cannot meet all its demands, regardless of their actual
intensity. As for node 1, whose input rate x1 is kept constant,
its output rate tends to decrease with increasing values of x2.
This behavior ensues from the competition between nodes 1
and 2. Note that, even for x2 = 0, node 1 struggles to meet its
demands as y1 = 0.4 (while x1 = 0.5). Finally, the network
utilization grows steadily from around 0.6 to 0.75 as the input
rate of node 2 increases. Overall, we observe that our proposed
model is able to accurately capture these behaviors with a
relative error typically less than 10%.

The second example involves a more complex network with
a nine-node topology whose conflict graph is given in Fig. 3.
Here, we consider several values for the input rate for node 6,
x6, ranging from 0 to 1 while we keep the input rates of other
nodes constant, i.e., x1 = 0.7, x2 = 0.8, x3 = 0.6, x4 = 0.5,
x5 = 0.8, x7 = 0.7, x8 = 0.6, and x9 = 0.9.

The corresponding results are shown in Fig. 4. In order to
keep the figure legible, we choose to trace the output rates
of nodes 5, 6, 7, and 9, bearing in mind that node 8’s output
rate evolves similarly to that of node 7, and that the first four
nodes of the network are not highly influenced by the change
in input rate of node 6. We observe that, as x6 grows from
0 to 1, the behaviors of nodes can be significantly changed,
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Fig. 2: Accuracy for the network of Fig. 1 as a function of
node 2’s input rate.

with some increasing their output rates (e.g., nodes 6 and 9),
while others experience a decrease (e.g., nodes 5 and 7), that
may result in a near node starvation as x6 comes closer to 1.
As shown by Fig. 4, our model was able to reproduce these
non-trivial behaviors with a good degree of precision.

Fig. 3: Conflict graph for a nine-node network.
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Fig. 4: Accuracy for the network of Fig. 3 as a function of
node 6’s input rate.

In the aim of providing a more comprehensive idea of the
accuracy of our model, we present, in Table II, the overall
error distribution obtained on over 250 samples. Each sample
depicts the precision of the output rate of a node in the nine or

four-node network. The median value indicates that, in 50%
of the samples, the deviation between yi as returned by the
simulator and by our model is less than 0.047. Table II also
shows that, in all our samples, the difference between the
model’s and the simulator’s yi is never larger than 0.20.

Median <0.05 0.05-0.1 0.1-0.2 >0.2 Utilization median
0.047 52.7% 33.3% 14% 0% 0.053

TABLE II: Distribution of the absolute errors for the output
rates, yi.

Note that in order to investigate the robustness of our
approach, we explored several other examples with different
network topologies, packet sizes, and means and distributions
for the active and inactive periods. Due to space constraints,
the corresponding results are not presented in this paper.
However, it was our experience that our model’s accuracy was
similar to that described by the two former examples.

B. Model applications

Having validated the accuracy of our model, we now
describe how its application can help to improve the general
behavior of a network by ensuring a better share of the channel
resources. In the two scenarios that follow, we assume the
nodes to be APs. Furthermore, we assume the presence of
a network controller possessing the knowledge of the nodes’
input rates and the network topology. We show how such a
controller can be used to either restrain a node’s input rate,
or to completely turn off a node, in the goal of improving the
network’s performance.

In our first scenario, we suppose that the controller is able
to regulate the input rate of a given node. Let us consider the
nine-node network of Fig. 3 and that node 9 is selected. Note
that node 9 plays a central role in the network topology as it is
able to block or preempt nodes 7 and 8 with the help of node 6.
Using our model, we discover the output rates of all nodes
(including y9) for values of x9 ranging from 0.2 to 1, and we
compute the associated value of Jain’s index [17], a commonly
used metric of fairness revealing how close the yi values are
to each other. Figure 5 reports the corresponding results. As
expected, we observe that, as we relax the constraint on x9,
nodes 7 and 8 undergo a significant decrease in their output
rates, unlike node 6 that experiences a growth of its output rate.
More interestingly, the network’s Jain’s index exhibits a peak
value for x9 close to 0.35. This peak is about 30% higher than
the value obtained with x9 = 1. In other words, to ensure a
fair share of the channel resources among the nodes, the best
scheme would be to restrain the input rate of node 9 to no
more than x9 = 0.35.

Our second scenario addresses the case in which the net-
work controller is entitled to completely turn off a node (e.g.,
by moving it to another radio channel). Our goal is to show
how our model can help determine which node should be
turned off in order to maximize a given performance metric
(Jain’s index or the network utilization U ). To that effect, we
consider the ten-node network whose conflict graph is given
in Fig. 6 in which the input rates have been set to x1 = 0.3,
x2 = 0.6, x3 = 0.8, x4 = 0.5, x5 = 0.7, x6 = 0.3, x7 = 0.5,
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Fig. 5: Jain’s fairness index and output rates for the network
of Fig. 3 as a function of node 9’s input rate.

x8 = 0.4, x9 = 0.9, and x10 = 0.7. One at a time, we turn off
each node of the network, and then we calculate the nodes’
output rates, together with the Jain’s index and the network
utilization. The corresponding results are shown in Fig. 7. Note
that Ni denotes the case where the i-th node is turned off, while
Original refers to the original ten-node network without any
nodes off. It appears that turning node 3 off would be the best
option as not only does it allow to achieve the largest network
utilization, but also maximizes the Jain’s fairness index.

Fig. 6: Conflict graph for a ten-node network.
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Fig. 7: Jain’s fairness index and network utilization for the
network in Fig. 6

VI. CONCLUSIONS

In this paper, we consider the performance evaluation of
unsaturated, and not fully-connected networks based on IEEE

802.11 DCF. We present a conflict graph-based modeling
approach to discover the attainable throughput of each node.
Our model consists of a single Markov chain which aims
at describing, at a high-level of abstraction, the current state
of the entire wireless network. Owing to its low complexity,
our approach is simple to implement, can cope with medium
sized networks, and its execution speed is fast. We validate
its accuracy against a discrete-event simulator. Results show
that our approach is typically accurate, with associated rel-
ative errors generally less than 15%, and that it captures
complex phenomena such as node starvation. We investigate
two potential applications of our proposed approach in which,
starting with a given network, we improve its performance
in terms of overall throughput or fairness by throttling the
throughput demand of a node, or by turning a node off
altogether. Future works aim at validating our model against
real-life measurements.
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