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1 Markov Chains

1.1 Definitions and properties

Exercise 1. We consider a flea moving along the points of an axis. The
position of the flea on the axis is represented by a positive integer. The flea
is initially at the origin 0. If the flea is at position i (with i 6= 0) at some
stage, it moves with probability p (0 < p < 1) on its right (from i to i+ 1),
and with probability 1 − p on its left. The flea necessarily moves at each
stage (it cannot stay at the same location).

1. What is the probability that the flea moves to position 1 if it is currently
at 0?

2. If after n steps, the flea is at position k, what is the probability of it
being at position i at the n+ 1th step?

3. What is the probability that the flea is at position i at the n+ 1th step
without having knowledge of the past?

Answers

1. The flea has only one possibility. It can only move to position 1.
Therefore, the probability to move to 1 is 1 and hence the probability
to move to any other position is 0.

2. The probability to move from position k to k+1 is p and the probability
to move from k to k − 1 is 1 − p (that’s given by the subject of the
exercise). For any other positions, the probability is nill.

3. If we know only the initial location of the flea (it is 0 for this exercise),
we have to look at all the possible trajectories from 0 to i in n+1 steps.
The Markov chain offers a Mathematical (and practical) framework to
do that.

Definition 1. Markov Chain. Let (Xn)n∈IN be a sequence of random
variables taking values in a countable space E (in our case we will take IN
or a subset of IN). (Xn)n∈IN is a Markov chain if and only if

P(Xn = in|Xn−1 = in−1, Xn−2 = in−2, .., X0 = i0) = P(Xn = in|Xn−1 = in−1)

Thus for a Markov chain, the state of the chain at a given time contains
all the information about the past evolution which is of use in predicting its
future behavior. We can also say that given the present state, the past and
the future are independent.

Definition 2. Homogeneity. A Markov chain is homogeneous if and
only if P(Xn = j|Xn−1 = i) does not depend on n.
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Definition 3. Irreducibility. A Markov chain is irreducible if and only
if every state can be reached from every other state.

Definition 4. Transition probabilities. For a homogeneous Markov chain,

pj,i = P(Xn = i|Xn−1 = j)

is called the transition probability from state j to state i.

Definition 5. Period. A state i is periodic if there exists an integer δ > 1
such that P(Xn+k = i|Xn = i) = 0 unless k is divisible by δ ; otherwise
the state is aperiodic. If all the states of a Markov chain are periodic
(respectively aperiodic), then the chain is said to be periodic (respectevily
aperiodic).

Exercise 2. We consider a player playing ”roulette” in a casino. Initially
the player has N dollars. For each spin, he bets 1 dollar on red. Let Xn be
the process describing the amount of money that the player has after n bets.

1. Is Xn a Markov chain?

2. In case of a Markov chain, what are the transition probabilities? Are
the states periodic or aperiodic? Is it irreducible?

3. What is the distribution of Xn with regard to Xn−1, and Xn with regard
to Xn−2 ?

Answers

1. Xn is a Markov chain. Given the value of Xn−1, we can express the
distribution of Xn whatever the value of Xk for k < n− 1.

2. The transition probabilities are

pi,i+1 =
Number of red compartments

Total number of compartments

pi,i−1 =
Number of black and green compartments

Total number of compartments

The number of compartments is 37 in France and 38 in USA. Both
have 18 red and black compartments but in USA there are two zeros
(0 and 00). So, in France, we get pi,i+1 = 18

37 and pi,i−1 = 19
37 . For the

USA, we get pi,i+1 = 18
38 and pi,i−1 = 20

38 .
The period can be seen as the minimum number of steps required to
return to the same state. For the above case, we can come back at
state j only after an even number of steps (except for the state 0).
The period is then 2 for all the states (except state 0). The chain is
not irreducible (irreducible means that for all (i, j), there is at least
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one trajectory from i to j with positive probability). Indeed, once Xn

has reached 0, the player hasn’t got anymore money. The state 0 is
therefore an absorbant state since the chain stays in this state for the
rest of the time.

3. The distribution of Xn with regard to Xn−1 is given by the transition
probabilities. The distribution of Xn w.r.t. Xn−2 is obtained by condi-
tionning the possible values of Xn−1 (if we look at the probability that
Xn = i, the only possible values of Xn−1 for which the probability is
not 0 is Xn−1 = i− 1 and Xn−1 = i+ 1):

P (Xn = i|Xn−2 = j)

= P (Xn = i,Xn−1 = i− 1|Xn−2 = j) + P (Xn = i,Xn−1 = i+ 1|Xn−2 = j)

= P (Xn = i|Xn−1 = i− 1, Xn−2 = j)P (Xn−1 = i− 1|Xn−2 = j)

+P (Xn = i|Xn−1 = i+ 1, Xn−2 = j)P (Xn−1 = i+ 1|Xn−2 = j) using Baye’s formula

= P (Xn = i|Xn−1 = i− 1)P (Xn−1 = i− 1|Xn−2 = j)

+P (Xn = i|Xn−1 = i+ 1)P (Xn−1 = i+ 1|Xn−2 = j) using Markov property

= pi−1,ipj,i−1 + pi+1,ipj,i+1

The only values of j for which the equality above will not be nill are
j = i − 2, i, i + 2. Let note pi,i−1 = p and pi,i+1 = 1 − p (it does not
depend on i), we get

P (Xn = i|Xn−2 = i− 2) = p2

P (Xn = i|Xn−2 = i) = 2p(1− p)
P (Xn = i|Xn−2 = i+ 2) = (1− p)2

Exercise 3. Give an example of a periodic Markov chain.
Answer We have seen that the Markov chain of exercise 2 has all its

states periodic with period 2 except 0. To have all the states of the same
period, we just have to change the transition probability of state 0 in such a
way that its period is 2. Let p0,1 = 1 (rather than p0,0 = 1) and we obtain
a Markov chain with period 2. Note that if the chain is irreducible, all the
states have the same period. When we changed the transition probability of
state 0, the chain became irreducible.

1.2 Distribution of a Markov chain.

Definition 6. We define the distribution vector Vn of Xn as

Vn = (P(Xn = 0),P(Xn = 1),P(Xn = 2), ..)

Exercise 4. Let Vn be the distribution vector of a Markov chain Xn.

1. Express vector Vn as function of Vn−1 and the transition matrix P.
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2. Express Vn as function of V0 and P .

Answers

1. We consider a Markov chain Xn which takes its values from {0, 1, 2, .., N}
(the method would be the same for any countable space) with transition
matrix P . We are going to express Vn(i) with regard to Vn−1 and P .
Conditionning by the values of Xn−1, we obtain:

Vn(i) = P (Xn = i)

=
N∑
j=0

P (Xn = i,Xn−1 = j)

=

N∑
j=0

P (Xn = i|Xn−1 = j)P (Xn−1 = j) Baye’s formulae

=
N∑
j=0

pj,iVn−1(j)

The above equation can be easily express in matrix form:

Vn = Vn−1P

2. A simple recursive process gives the result:

Vn = Vn−1P

= Vn−2P
2

= V0P
n

So a simple way to compute the probability that {Xn = i} is to compute∑
j∈E V0(j)p

(n)
j,i . More generally, we get (if we stop the recurrence after

k steps):

Vn(i) =
∑
j∈E

Vn−k(j)p
(n−k)
j,i (The Chapman-Kolmogorov equation)

It is important to note that p
(k)
j,i is the element (i, j) of the matrix P k

and not the element pj,i to the power k of the matrix P .

Exercise 5. We consider a Markov chain that take its value from the set
{0, 1}. The transition matrix is(

p 1− p
1− q q

)
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What is the limit of Vn when n tends to infinity? Compute Vn with p = q =
1
2 .

Answers From exercise 4, we know that Vn = V0P
n. One way to compute

Vn is to ”diagonalize” the matrix P . In other words, we break up P as
P = QDQ−1 where D is a diagonal matrix and Q is invertible. Hence, we
can write

Vn = V0QD
nQ−1

The eigenvalues of P are the roots of the equation det(P−λI) = 0, where
det() is the determinant, I is the identity matrix with same dimensions as
that of P and λ is a scalar. We obtain for our example:

det(P − λI) = λ2 − λ(p+ q)− (1− p− q)

The two roots of this equation are λ1 = 1 and λ2 = −(1−q−p). The matrix
D is therefore

D =

(
1 0
0 −(1− q − p)

)
The eigenvectors can be found by solving the equation (P − λ1I)X = 0

(resp. λ2) with x = (x1, x2). For λ1, we get

(p− 1)x1 + (1− p)x2 = 0

(1− q)x1 + (q − 1)x2 = 0

The two equations are redundant, it suffices to find a vector (x1, x2)
which verifies one of the two equations. We choose x1 = 1 and x2 = 1.
The first eigenvector is therefore E1 = (1, 1)T . Similar computations lead to
E2 = (1,− 1−q

1−p)T . The matrix Q and Q−1 are then

Q =

(
1 1

1 − 1−q
1−p

)
and

Q−1 =

(
1−q

1−p+1−q
1−p

1−p+1−q
1−p

1−p+1−q − 1−p
1−p+1−q

)
From these expressions, it is very easy to compute Vn for all n. If p =

q = 1
2 , we get

D =

(
1 0
0 0

)

Q−1 =

(
1
2

1
2

1
2 −1

2

)
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and

Q =

(
1 1
1 −1

)
Since for this particular case, Dn = D, we obtain

Vn = V0

(
1
2

1
2

1
2

1
2

)
and Vn = (12 ,

1
2) whatever the values of V0. We have seen through this

simple example, that the diagonalization of transition matrix is not an easy
task. When the space E has a much greater number of elements (note that
it can also be infinite), the diagonalization is even impossible. Moreover, in
practical cases, we are not interested in the distribution of Vn for small n
but rather for large n or for the asymptotic behavior of the Markov chain.
We will see that under certain assumptions, the distribution of Vn reaches
an equilibrium state which is clearly easier to compute.

Definition 7. If Xn has the same distribution vector as Xk for all (k, n) ∈
IN2, then the Markov chain is stationary.

Exercise 6. Let (Xn)n∈IN be a stationary Markov chain. Find an equation
that the distribution vector should verify.

Theorem 1. Let (Xn)n∈IN be a Markov chain. We assume that Xn is
irreducible, aperiodic and homogeneous. The Markov chain may possess an
equilibrium distribution also called stationary distribution , that is,
a distribution vector π (with π = (π0, π1, ...)) that satisfies

πP = π (1)

and ∑
k∈E

πk = 1 (2)

If we can find a vector π satisfying equations (1) and (2), then this
distribution is unique and

lim
n→+∞

P (Xn = i|X0 = j) = πi

so that π is the limiting distribution of the Markov chain.

Theorem 2. Ergodicity. Let (Xn)n∈IN be a Markov chain. We assume that
Xn is irreducible, aperiodic and homogeneous. If a Markov chain possesses
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an equilibrium distribution, then the proportion of time the Markov chain
spends in state i during the period [0, n] converges to πi as n→ +∞:

lim
n→+∞

1

n

n∑
k=0

1lXk=i = πi

In this case, we say that the Markov chain is ergodic.

Exercise 7. In this exercise, we give two examples of computation and
interpretation of the distribution obtained with equations 1 and 2 when the
assumptions of theorem 1 does not hold.

1. Resume exercise 2 on roulette. Does the Markov chain possess an
equilibrium distribution? Compute it.

2. Resume exercise 1 on the flea. Does the Markov chain possess an
equilibrium distribution? Compute it.

Remark 1. Equilibrium distribution and periodicity. If the Markov
chain is periodic, then there is no limit to the distribution vector. The solu-
tion of equations (1) and (2) when it exists, is interpreted as the proportion
of time that the chain spends in the different states.

Remark 2. Transient chain. If there is no solution to equations (1)
and (2) for an aperiodic, homogeneous, irreducible Markov chain (Xn)n∈IN
then there is no equilibrium distribution and

lim
n→+∞

P (Xn = i) = 0

Remark 3. The state of a Markov chain may be classified as transient or
recurrent.

1. A state i is said to be transient if, given that we start in state i,
there is a non-zero probability that we will never return back to i.
Formally, let the random variable Ti be the next return time to state i
(Ti = min{n : Xn = i|X0 = i}), then state i is transient if and only if
there exists a finite Ti such that

P (Ti < +∞) < 1

2. A state i will be recurrent if it is not transient (P (Ti < +∞) = 1).

In case of an irreducible Markov chain, all the states are either transient
or recurrent. If the Markov chain possesses an equilibrium distribution, then
the Markov chain is recurrent (all the states are recurrent) and πi = 1

E[Ti] .
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Exercise 8. Resume exercise 1 on the flea. We assume now, that there is
a probability p that the flea goes to the left, and a probability q that the flea
stays at the current state (with p+ q < 1).

1. Express the transition matrix.

2. Is the Markov chain still periodic?

3. What is the condition of existence of a solution to equations (1) and (2)?
Compute it.

Answers
The transition matrix is:

P =


0 1 0 0 0 ...

1− q − p q p 0 0 ...
0 1− q − p q p 0 ...
0 0 1− q − p q p ...
... ... ... ... ... ...


Equation πP = π leads to the following set of equations:

π1(1− q − p) = π0 (3)

π0 + qπ1 + (1− q − p)π2 = π1 (4)

pπ1 + qπ2 + (1− q − p)π3 = π2

...

pπk−1 + qπk + (1− q − p)πk+1 = πk (5)

From equations 3 and 4, we obtain

π1 =
π0

1− q − p
and π2 =

p

(1− q − p)2
π0

We assume that πk can be written in the form πk = pk−1

(1−q−p)kπ0. To prove

this, we just have to verify that this form is a solution of equation 5 (it is of
course true). Now, the distribution has to verify equation 2:

+∞∑
i=0

πi =

[
1 +

+∞∑
i=1

pi−1

(1− q − p)i

]
π0

=

[
1 +

1

(1− q − p)

+∞∑
i=0

(
p

(1− q − p)

)i]
π0

The sum in the above equation is finite if and only if p < 1− q − p. In this
case, we get (from

∑
π1 = 1):

π0 =

[
1 +

1

1− q − 2p

]−1
9



and

πk = π0
pk−1

(1− q − p)k

If p > 1−q−p, the sum is infinite and π0 = 0, thus πi = 0 for all i. The
process is then transient. The flea tends to move away indefinitely from 0.

Exercise 9. Let (Xn)n∈IN be a Markov chain with E = 0, 1, 2, 3, 4 and with
the following transition matrix:

0 1
2

1
2 0 0

1
3 0 1

3
1
3 0

1
3

1
3 0 1

3 0
0 0 0 1

2
1
2

0 0 0 1
2

1
2


1. Solve equations (1) and (2) for this Markov chain.

2. What is the condition for the existence of a solution? Why?

Answers The equation πP = π leads to the following set of equations:

1

3
π1 +

1

3
π2 = π0

1

2
π0 +

1

3
π2 = π1

1

2
π0 +

1

3
π1 = π2 (6)

1

3
π1 +

1

3
π2 +

1

2
π3 +

1

2
π4 = π3 (7)

1

2
π3 +

1

2
π4 = π4 (8)

Equation 8 leads to π3 = π4. Substituting π3 = π4 in equation 7 leads
to π1 = π2 = 0 (since π1 and π2 cannot be negative). Putting π1 = π2 = 0
in equation 6 leads to π0 = 0. Finally, we get π0 = π1 = π2 = 0 and
π3 = π4 = 1

2 . This is easily interpretable. If the chain goes in the state 3 or
4, it stays indefinitly among these two states. Indeed, the probability to go
to other states is nill. So, if the chain starts from a state among {0, 1, 2},
it will stay in it for a finite number of steps, then (with probability 1) it will
move to the set {3, 4} and stay there for the rest of the time. The states
{0, 1, 2} are transient and the other two states are recurrent. It is due to the
fact that the chain is not irreducible. When we deal with a reducible chain,
we generally consider only a subset of states (which are irreducible) and we
compute the stationnary distribution for this subset. In this exercise, the
irreducible subset of states is {3, 4}.
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1.3 A first queue

Exercise 10. Let us consider the following discrete time queue. We consider
a transmission buffer where packets are stored before emission on a link. The
time is slotted. At each slot, the system tries to send a packet. Since the
link is considered unreliable, there is a probability p that a packet is lost. In
this case, the packet stays in the buffer and a new attempt is made at the
next slot. The packet arrives in the buffer with a rate a. In other words,
a is the probability that a new packet arrives at a slot. Packet arrivals and
losses are supposed independent at each slot.

Let (Xn)n∈IN be the sequence of random variables representing the num-
ber of packets in the buffer at slot n. We assume that initially there are no
packets in the buffer (X0 = 0).

1. Is Xn a Markov chain?

2. Compute the transition Matrix.

3. What is the existence condition of an equilibrium distribution?

4. Compute the equilibrium distribution when it exists.

Solution. Exercise 10

1. The discrete process Xn is a Markov chain by definition.

2. The transition Matrix is as follows:(p0,0 = 1−a, p0,1 = a and for i > 0
pi,i−1 = (1− p)(1− a), i.e. no packet has came and a packet has been
transmitted; pi,i = (1− a)p+ a(1− p), i.e. no packet has came and no
packet has been transmitted (it has been lost and as a consequence it
stays in the queue); pi,i+1 = ap, a packet has came but no packet has
been transmitted):


1− a a 0 ...

(1− a)(1− p) (1− a)p+ a(1− p) ap 0 ...
0 (1− a)(1− p) (1− a)p+ a(1− p) ap 0 ...

... ... ...


3 and 4. We have to solve equations (1) and (2). Since the chain is aperiodic,

homogeneous and irreducible, it suffices that there is a solution to prove
the existence and uniqueness of an equilibrium/limit distribution. The
equations πP = π leads to the following equations system:

π0 = (1− a)π0 + (1− a)(1− p)π1 (9)

π1 = aπ0 + [(1− a)p+ a(1− p)]π1 + (1− p)(1− a)π2 (10)

... = ...

πk = apπk−1 + [(1− a)p+ a(1− p)]πk + (1− p)(1− a)πk+1(11)
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Equation 9 (resp. 10) leads to the expression of π1 (resp. π2) as a
function of π0:

π1 =
a

(1− a)(1− p)
π0

π2 =
a2p

(1− a)2(1− p)2
π0

So, we assume that πk has the following form:

πk =
akpk−1

(1− a)k(1− p)k
π0

We prove that by substituting this expression in the left-hand side of
equation (11):

(11) = ap
ak−1pk−2

(1− p)k−1(1− a)k−1
π0 + [(1− a)p+ a(1− p)] akpk−1

(1− p)k(1− a)k
π0

+(1− p)(1− a)
ak+1pk

(1− p)k+1(1− a)k+1
π0

= π0
akpk−1

(1− p)k(1− a)k
[(1− a)(1− p) + (1− a)p+ a(1− p) + ap]

= π0
akpk−1

(1− p)k(1− a)k
[(1− a)− (1− a)p+ (1− a)p+ a(1− p) + ap]

= π0
akpk−1

(1− p)k(1− a)k
[1]

The sum must be one.

+∞∑
k=0

πk = π0

[
1 +

+∞∑
k=1

1

p

(
ap

(1− a)(1− p)

)k]

= π0

[
1 +

1

p

(
ap

(1− a)(1− p)

) +∞∑
k=0

(
ap

(1− a)(1− p)

)k]

= π0

[
1 +

1

p

(
ap

(1− a)(1− p)

)
1

1− ap
(1−a)(1−p)

]
The last equality is true only if the term to the power k is strictly less
than 1. Otherwise the sum does not converge. The condition for the
existence of an equilibrium distribution is then ap < (1 − a)(1 − p)
leading to 1−p > a. So, the probability of arrival MUST BE less than
the probability of transmission success. It is obvious that otherwise,
the buffer will fill infinitely. The last equation gives the expression for
π0 and the final expression of πk depends only on p and a.
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2 Markov Processes

In this Section, we introduce the definition and main results for Markov
processes. A Markov process is a random process (Xt)t∈φ indexed by a
continuous space (it is indexed by a discrete space for the Markov chains)
and taking values in a countable space E. In our case, it will be indexed
by IR+ (φ = IR+). In this course, we are only interested in non explosive
Markov processes (also called regular processes), i.e. processes which are
capable of passing through an infinite number of states in a finite time. In
the definition below, we give the property that a random process must verify
to be a Markov process.

Definition 8. The random process or stochastic process (Xt)t∈IR+ is a
Markov process if and only if, for all (t1, t2, ...tn) ∈ (IR+)n such that
t1 < t2 < t3 < ... < tn−1 < tn and for (i1, ..., in) ∈ En,

P(Xtn = in|Xtn−1 = in−1, Xtn−2 = in−2, ..., Xt1 = i1) =

P
(
Xtn = in|Xtn−1 = in−1

)
A Markov process is time homogeneous if P (Xt+h = j|Xt = i) does

not depend on t. In the following, we will consider only homogeneous Markov
process.

The interpretation of the definition is the same as in the discrete case
(Markov chain) ; Conditionally to the present the past and the future are
independent. From the Definition 8 of a Markov process, we obtain in
Sections 2.2 and 2.3 the main results on the Markov processes. But, we
begin by giving some properties of the exponential distribution which play
an important part in Markov process.

2.1 Properties of the exponential distribution.

Definition 9. The probability density function (pdf) of an exponential
distribution with parameter µ (µ ∈ IR+) is

f(x) = µe−µx1lx≥0

The cumulative distribution function ( denoted cdf, defined as F (u) =
P(T ≤ u)) of an exponential distribution with parameter µ is

F (u) =
(
1− e−µu

)
1lu≥0

Proposition 1. Memorylessness. An important property of the expo-
nential distribution is that it is memoryless. This means that if a random
variable T is exponentially distributed, its conditional probability obeys
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P (T > t+ s|T > s) = P (T > t)

Intuitively, it means that the conditional probability to wait more than t
after waiting s, is no different from the initial probability to wait more than
t.

Exercise 11. Prove Proposition 1.

Proof. By definition of the conditional probability, we get

P (T > t+ s|T > s) =
P (T > t+ s, T > s)

P (T > s)

=
P (T > t+ s)

P (T > s)

=
e−µ(t+s)

e−µs

= e−µt

Thus, P (T ≤ t+ s|T > s) = 1− e−µt which is the cdf of an exponential
distribution.

Proposition 2. If a random variable T is memoryless, i.e. if it verifies the
following property

P (T > t+ s|T > s) = P (T > t)

then it follows an exponential distribution.

Proof. Let T be a random variable satisfying the following property:

P (T > t+ s|T > s) = P (T > t)

P (T > t+ s) = P (T > t+ s, T > s)

= P (T > t+ s|T > s)P (T > s)

= P (T > t)P (T > s) Memorylessness of T

The last equality is only verified by exponential distribution. Indeed,
∀n ∈ IN+, we get

P (T > t) = P
(
T >

t

n

)n
There is only one function satisfying the last equality for all n, i.e.

the power function. Therefore, there exists a constant µ > 0 such that
P (T > t) = e−µt for all t > 0. The random variable T definitely follows an
exponential distribution.
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Proposition 3. Minimum of exponential r.v. Let X1, ..., Xn be inde-
pendent exponentially distributed random variables with parameters µ1, ..., µn.
Then min(X1, ..., Xn) is also exponentially distributed with parameter µ1 +
µ2 + ...+ µn.

The probability that Xi is the minimum is µi
µ1+µ2+...+µn

.

Exercise 12. Prove Proposition 3.

Proof. The proof is obtained by recurrence. Let X1 and X2 be independent
exponentially distributed random variables with parameters µ1, µ2.

P (min(X1, X2) > u) = P (X1 > u,X2 > u)

= P (X1 > u)P (X2 > u)

= e−µ1ue−µ2u

= e−(µ1+µ2)u

P (argmin(X1, X2) = X1) = P (X2 > X1)

=

∫ +∞

0
P (X2 > u) fX1(u)du

=

∫ +∞

0
e−µ2uµ1e

−µ1udu

=
µ1

µ1 + µ2

min(X1, X2, X3) = min(min(X1, X2), X3) is the min of two independent
exponential distribution with parameters µ1 + µ2 and µ3. Thus it is an
exponential distribution with parameter µ1 + µ2 + µ3, and so on.

2.2 Distribution of a Markov process.

From the definition of a homogeneous Markov process we can deduce that
the time that the Markov process spent in a given state is exponentially
distributed. Indeed, by definition of a Markov process the process is memory
less (the proof is quite similar to the proof of Proposition 2).

Proof. Let Yi be the time spent in state i. We show that Yi is memoryless
and thus exponentially distributed according to Proposition 2.

15



P (Yi > u+ v|Yi > v) = P (Xt = i,∀t ∈ [0, u+ v]|Xt = i,∀t ∈ [0, v])

= P (Xt = i,∀t ∈ [v, u+ v]|Xt = i,∀t ∈ [0, v])

= P (Xt = i,∀t ∈ [v, u+ v]|Xv = i) (Markov property)

= P (Xt = i,∀t ∈ [0, u]|X0 = i) (Homogeneity)

= P (Yi > u)

Given the current state of the Markov process, the future and past are
independent, the choice of the next state is thus probabilistic. The probabil-
ities of change of states can thus be characterized by transition probabilities
(a transition matrix). Since the Markov process is supposed homogeneous,
these transition probabilities do not depend on time but only on the states.
So, we give a new definition of a Markov process which is of course equivalent
to the previous one.

Definition 10. A homogeneous Markov process is a random process indexed
by IR+ taking values in a countable space E such that:

• the time spent in state i is exponentially distributed with parameter µi,

• transition from a state i to another state is probabilistic (and indepen-
dent of the previous steps/hops). The transition probability from state
i to state j is pi,j.

Exercise 13. Let us consider the following system. It is a queue with one
server. The service duration of a customer is exponentially distributed with
parameter µ and independent between customers. The interarrival times
between customers are exponentially distributed with parameters λ. An in-
terarrival is supposed independent of the others interarrivals and service
durations.

1. Prove that the time spent in a given state is exponentially distributed.
Compute the parameter of this distribution.

2. Compute the transition probability.

Answers

1. Suppose that at time T the Markov process has changed its state and
is now equal to i (i > 0), so we get XT = i. Since two customers
cannot leave or arrive at the same time, there is almost surely one
customer who has left (or who has arrived) at T . Suppose that a
customer has arrived at T , then the time till the next arrival follows
an exponential distribution with parameter λ. Let U denote the random

16



variable associated with this distribution. Due to the memorylessness
of the exponential distribution, the next departure is still an exponential
distribution with parameter µ. Let V be this random variable. The
next event will arrive at min(U, V ). Since U and V are independent,
min(U, V ) is also an exponential random variable with parameter µ+λ.
The same result holds if a customer leaves the system at T .

2. Suppose that there are i customers in the system. The next event
will correspond to a departure or an arrival. It will be an arrival if
min(U, V ) = U and it will be a departure if min(U, V ) = V . From
Proposition 3, we deduce that the probability to move from i to i + 1
(i > 0) is then P (min(U, V ) = U) = λ

λ+µ and the probability to move

from i to i−1 is P (min(U, V ) = V ) = µ
λ+µ . The probability to go from

0 to 1 is 1.

Let Vt be the distribution vector of the Markov process. Vt is defined as

Vt = (P (Xt = 0) ,P (Xt = 1) ,P (Xt = 2) , ...)

In order to find an expression for V (t), we try to compute its derivative.
Let h be a small value. The probability to have more than one change
between t and t + h belongs to o(h) (set of functions f such that f(h)

h → 0
when h→ 0). For instance, the probability that there are two hops between
t and t + h from state i to j and from j to k is (where Yi is time spent in
state i)

P (Yi + Yj ≤ h) =

∫ h

0
P (Yi ≤ u)µje

−µjudu

=

∫ h

0

(
1− e−µi(h−u)

)
µje
−µjudu

= 1 +
µi

µj − µi
e−µjh − µj

µj − µi
e−µih

= 1 +
µi

µj − µi

(
1− µjh+

(µjh)2

2
+ o(h)

)
− µj
µj − µi

(
1− µih+

(µih)2

2
+ o(h)

)
=

µiµj
2

h2 + o(h)

= o(h)

The probability that the process jumps from state i to state j between
t and t + h can be written as the sum of two quantities. The first one is
the probability that the process jumps from i to j in one hop; the second

17



quantity is the probability that the process jumps form i to j between t and
t + h with more than one hops. For this last quantity we have seen that it
belongs to o(h). From Definition 10, the first quantity can be written as the
product that there is one hop betweeen t and t + h (that’s the probability
that the exponential variable describing the time spent in state i is less than
h) multiplied by its transition probability (probability to go from i to j).

P (Xt+h = j|Xt = i) = pi,jP (Yi < h) + o(h)

= pi,j(1− e−µih) + o(h)

= pi,j (1− (1− µih+ o (h))) + o(h)

= pi,jµih+ o(h)

In the same way, the probability that the process is in the same state i
at time t and t+ h is

P (Xt+h = i|Xt = i) = P (Yi > h) + o(h)

= e−µih + o(h)

= 1− µih+ o(h)

Now, we compute the derivative of a term of the distribution vector, by
definition of a derivative, we get

dVt(j)

dt
= lim

h→0

Vt+h(j)− Vt(j)
h

= lim
h→0

P (Xt+h = j)− P (Xt = j)

h

Therefore,

Vt+h(j) = P (Xt+h = j)

=
∑
i∈E

P (Xt+h = j|Xt = i)P (Xt = i)

=
∑
i∈E

P (Xt+h = j|Xt = i)Vt(i)

= P (Xt+h = j|Xt = j)Vt(j) +
∑

i∈E,i 6=j
P (Xt+h = j|Xt = i)Vt(i)

= (1− µjh+ o(h))Vt(j) +
∑

i∈E,i 6=j
(pi,jµih+ o(h))Vt(i)

Vt+h(j)− Vt(j) = (−µih+ o(h))Vt(j) +
∑

i∈E,i 6=j
(pi,jµih+ o(h))Vt(i)

= −µjhVt(j) +
∑

i∈E,i 6=j
pi,jµihVt(i) + o(h)
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and

lim
h→0

Vt+h(j)− Vt(j)
h

= −µjVt(j) +
∑

i∈E,i 6=j
pi,jµiVt(i)

Let µi,j be defined as µi,j = pi,jµi, the derivative of the element j of the
distribution vector is

dVt(j)

dt
= −µjVt(j) +

∑
i∈E,i 6=j

µi,jVt(i)

The derivative of the distribution can be written as a matrix:

dVt
dt

= VtA (12)

where A is defined as (ai,j = µi,j if i 6= j and aj,j = −µj):

A =


−µ0 µ0,1 µ0,2 ... ... ...
µ1,0 −µ1 µ1,2 µ1,3 ... ...
... ... ... ... ... ...
... ... µn,n−1 −µn µn,n+1 ...


The matrix A is called the infinitesimal generator matrix of the Markov

process (Xt)t∈IR+ .
The solution of the differential equation dVt

dt = VtA is

Vt = CeAt

where C is a constant (C = V0) and

eAt = I +At+
(At)2

2!
+

(At)3

3!
+ ...

Remark 4. We have seen that the time spent in a state is exponentially
distributed. It corresponds to the minimum of several exponential random
variables, each one leading to another state. The parameter µj is then the
sum of the parameters of these exponential random variables, and µi,j is the
parameter of the exponential r.v. leading from state i to state j. So, we get

µi =
∑
j∈E

µi,j
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2.3 Equilibrium distribution of a Markov process.

We have seen in the Section on Markov chains that there may exist an
equilibrium distribution of Vn. We call this equilibrium distribution π. It
corresponds to the asymptotic distribution of Vt when t tends to infinity.
This equilibrium distribution does not depend on t. So, if such a distribution
π exists for the Markov process, it should verify πA = 0. Indeed, if t tends
to infinity on both sides of equation 12 we get dπ

dt = πA and since π does

not depend on t, dπ
dt = 0.

Theorem 3. Existence of an equilibrium distribution. Let (Xt)t∈IR+

be a homogeneous, irreducible Markov process. If there exists a solution to
equations

πA = 0 and
∑
i∈E

πi = 1 (13)

then this solution is unique and

lim
t→+∞

Vt = π

Theorem 4. Ergodicity. If there exists a solution to equations (13) then
the Markov process is ergodic, for all j ∈ E

lim
T→+∞

1

T

∫ T

0
1lX−t =jdt = πj

Exercise 14. We consider the system described in Exercise 13.

1. Express the infinitesimal generator.

2. What is the existence condition of an equilibrium distribution? Express
it when it exists.

Answers

1. From remark 4, we know that we can see ai,j (i 6= j) as the parame-
ter of the exponential distribution leading from state i to state j. For
instance, if the system is in state j, the exponential random variable
leading from i to i + 1 has parameter λ. So, ai,i+1 = λ. In the same
way, the exponential random variable leading from i to i−1 has param-
eter µ. For the other states j with |i−j| > 1, the transition probability
are nill. We have,

A =


−λ λ 0 0 0 ...
µ −(λ+ µ) λ 0 0 ...
0 µ −(λ+ µ) λ 0 ...
0 0 µ −(λ+ µ) λ ...
... ... ... ... ... ...


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2. We try to find a solution to equations 13. If such a solution exists, the
equilibrium distribution exists and is given by π. πA = 0 leads to the
following set of equations:

−λπ0 + µπ1 = 0 (14)

λπ0 − (λ+ µ)π1 + µπ2 = 0 (15)

...

λπk−1 − (λ+ µ)πk + µπk+1 = 0 (16)

We express all the πk with regard to π0. Equations 14 and 15 lead to
π1 = λ

µπ0 and π2 = λ2

µ2
π0. We assume that πk has the following form

πk =
(
λ
µ

)k
π0. We prove that this expression of π is a solution of the

system by subsituting πk−1, πk and πk+1 in 16. We get,

λπk−1 − (λ+ µ)πk + µπk+1 =

(
λ

(
λ

µ

)k−1
− (λ+ µ)

(
λ

µ

)k
+ µ

(
λ

µ

)k+1
)
π0

=

(
λk

µk−1
− λk+1

µk
− λk

µk−1
+
λk+1

µk

)
π0

= 0

πk =
(
λ
µ

)k
π0 is thus a solution of πA = 0. We have now to find the

value of π0 such that
∑+∞

i=0 πk = 1.

+∞∑
i=0

πk = π0 +

+∞∑
i=1

π0

(
λ

µ

)k
= π0

[
1 +

λ

µ

+∞∑
i=0

(
λ

µ

)k]

If λ
µ ≥ 1, the sum diverges and there is no solution. If λ

µ < 1, the sum
converges and we get

+∞∑
i=0

πk = π0

[
1 +

λ

µ

1

1− λ
µ

]

= π0
1

1− λ
µ

21



thus, in order to ensure that
∑+∞

i=0 πk = 1 we take π0 = 1− λ
µ , and we

finally obtain the following equilibrium distribution (for λ
µ < 1:

πk =

(
λ

µ

)k (
1− λ

µ

)
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3 Jump chain

3.1 A natural jump chain

There is a natural way to associate a Markov chain with a Markov process.
Let (Yi)i∈IN , defined as Y0 = X0, Y1 = XT1 , ..., Yn = XTn where Tn are the
times Xt changes of states. This Markov chain is called the jump chain of
the Markov process Xt. Its transition probabilities are pi,j . The probability
for the jump chain to stay in the same state twice is nil. The equilibrium
distribution of a jump chain will in general be different from the distribution
of the Markov process generating it. This is because the jump chain ignores
the length of time the process remains in each state.

Exercise 15. We consider a system with one server. When the server is
idle, an incoming customer is served with an exponential r.v. with parameter
µ. If the server is busy (there is a customer being served), an incoming
customer is dropped and never comes back. The interarrival times of the
customers are a sequence of independent exponential r.v. with parameter λ.

1. Compute the equilibrium distribution of the Markov process describing
the number of customers in the system.

2. Compute the equilibrium distribution of the jump chain.

Solution. The infinitesimal generator is

A =

(
−λ λ
µ −µ

)
From equation πA = 0, we get π1 = λ

µπ0. π0 + π1 = 1 leads to π1 = λ
λ+µ

and π0 = µ
λ+µ .

For the jump chain, the transition matrix is

P =

(
0 1
1 0

)
Equation πP = π and π0 + π1 = 1 leads to π1 = 1

2 and π0 = 1
2 . So, the

stationary distribution of the Markov chain and Markov process are different.
The jump chain considers only the fact that when we are in state 0 we have
no choice but to go to state 1 and inversely. It does not capture the time
spent in each state.

Exercise 16. The equilibrium distribution of a jump chain may be directly
deduced from the distribution of the Markov process. First, we remark that

πP = π ⇔ ∀j ∈ E,
∑
i∈E

πipi,j = πj (17)
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and,

πA = 0⇔ ∀j ∈ E,
∑
i∈E

πiµi,j = πjµj (18)

Let (Xt)t∈IR+ be a Markov process possessing an equilibrium distribution
π.

1. Show that π
′
j = πjµj is a solution of equation πP = π.

2. Show that π
′
j = Cπjµj is the equilibrium distribution of the jump chain

if and only if C−1 =
∑

i∈E µiπi is finite.

Solution. The substitution of π
′

in equation (17) leads to

∑
i∈E

π
′
ipi,j =

∑
i∈E

πiµipi,j

=
∑
i∈E

πiµi
µi,j
µi

see remark 4

=
∑
i∈E

πiµi,j

= πjµj from equation 18

= π
′
j

π
′

verifies πP = π. It must be normalized to be an equilibrium distribu-
tion. It can be normalized if and only if C−1 =

∑
i∈E π

′
i is finite. In this

case, there exists a unique equilibrium distribution π
′′

= Cπ′.

Remark 5. A closed formula, solutions to equations πA (or πP = π),
can only be found in special cases. For most of the Markov processes (or
Markov chains) numerical computations are necessary. A simple way to
find a solution when E has N elements (N is supposed finite) is to apply
the following algorithm.

For the Markov chain, it is easy. A vector π(0) is initialized with π
(0)
i =

1
N . Then πn is computed as π(n) = π(n−1)P . We iterate π(n) until the

difference maxi∈E
(
π(n) − π(n−1)

)
is less than a given threshold ε.

For the Markov process, we use a similar algorithm. πA = 0 can be
written as π = cπA+ π where c is a constant. If we define the matrix P as
cA+ I, equation πA = 0 becomes πP = π and the algorithm of the Markov
chain above can be applied. Note that the constant c may be chosen such
that c < 1

maxi∈E µi
.
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3.2 Other jump chains

In this Section, we consider Birth and Death processes. With such processes,
a process Xt increases or decreases by 1 at each jump. This process is not
necessarily Markovian. We associate to these processes two jump chains.
Let Ti be the ith instant the Markov process is incremented and Si the
ith instant the process is decremented. The first chain is a sequence of
random variables (not necessary Markovian) corresponding to the different
states of the process at time T−i . The second chain is a sequence of random
variables (not necessary Markovian) corresponding to the different states of
the process at time S+

i .

Proposition 4. The equilibrium distribution (when it exists) of the two
chains are equals.

Proposition 5. If the random variables Ti+1−Ti of the process are indepen-
dently, identically and exponentially distributed (it is a Poisson point process
in this case), the equilibrium distribution (when it exists) of the chain at the
arrival time is the same as the equilibrium distribution of the process.

Proof. Let pa(n, t) be the stationary probability at an arrival time (P(XT−j
=

n)), and Nt the number of arrivals in [0, t),

pa(n, t) = lim
dt→0

P (Xt = n|Nt+dt −Nt = 1)

= lim
dt→0

P (Xt = n,Nt+dt −Nt = 1)

P (Nt+dt −Nt = 1)

= lim
dt→0

P (Nt+dt −Nt = 1|Xt = n)P (Xt = n)

P (Nt+dt −Nt = 1)

Since arrivals are modeled by a Poisson point process, the probability
that there is an arrival between t and t + dt is independent of the value of
Xt. So, we get

pa(n, t) = lim
dt→0

P (Nt+dt −Nt = 1)P (Xt = n)

P (Nt+dt −Nt = 1)

pa(n, t) = lim
dt→0

P (Xt = n)

pa(n, t) = P (Xt = n)
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4 Queuing Theory

Queueing theory is the mathematical study of waiting lines (or queues). The
theory enables mathematical analysis of several related processes, including
arriving at the queue, waiting in the queue , and being served by the server(s)
at the front of the queue. The theory permits the derivation and calculation
of several performance measures including the average waiting time in the
queue or the system, the expected number of customers waiting or receiving
service and the probability of encountering the system in certain states, such
as empty, full, having an available server or having to wait a certain time to
be served.

4.1 Kendall Notation

A queue is described in shorthand notation by A/B/C/D/E or the more
concise A/B/C. In this concise version, it is assumed that D = +∞ and
E = FIFO.

1. A describes the arrival process of the customers. The codes used are:

(a) M (Markovian): interarrival of customers are independently, iden-
tically and exponentially distributed. It corresponds to a Poisson
point process.

(b) D (Degenerate): interarrival of customers are constant and always
the same.

(c) GI (General Independent): interarrival of customers have a gen-
eral distribution (there is no assumption on the distribution but
they are independently and identically distributed).

(d) G (General): interarrival of customers have a general distribution
and can be dependent on each other.

2. B describes the distribution of service time of a customer. The codes
are the same as A.

3. C is the number of servers.

4. D is the number of places in the system (in the queue). It is the
maximum number of customers allowed in the system including those
in service. When the number is at its maximum, further arrivals are
turned away (dropped). If this number is omitted, the capacity is
assumed to be unlimited, or infinite.

5. E is the service discipline. It is the way the customers are ordered to
be served. The codes used are:
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(a) FIFO (First In/First out), the customers are served in the order
they arrived in.

(b) LIFO (Last In/First out), the customers are served in the reverse
order to the order they arrived in.

(c) SIRO (Served In Random Order), the customers are served ran-
domly.

(d) PNPN (Priority service), the customers are served with regard
to their priority. All the customers of the highest priority are
served first, then the customers of lower priority are served, and
so on. The service may be preemptive or not.

(e) PS (Processor Sharing), the customers are served equally. Sys-
tem capacity is shared between customers and they all effectively
experience the same delay.

Exercise 17. What is the Kendall notation for the queue of exercise 13.

4.2 M/M/1

Exercise 18. M/M/1 Let there be a M/M/1 queue.

1. What is the average time between two successive arrivals?

2. What is the average number of customers coming per second ?

3. What is the average service time of a customer ?

4. What is the average number of customers that the server can serve per
second ?

5. Compute the equilibrium distribution and give the existence condition
of this distribution.

6. Compute the mean number of customers in the queue under the equi-
librium distribution.

7. Compute the average response time (time between the arrival and the
departure of a customer).

8. Compute the average waiting time (time between the arrival and the
beginning of the service).

9. Compare the obtained results with results of a D/D/1 queue with the
same arrival and service rates.

10. Plot the mean number of customers and the mean response times for
the two queue (M/M/1 and D/D/1) for λ

µ varying from 0 to 1.
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Number of customers Xt for a D/D/1 queueNumber of customers Xt for a D/D/1 queue

1/µ 1/µ 1/µ

0

1

The customers arrive at regular intervals.

1/λ 1/λ 1/λ

(a) The number of customers in the D/D/1
queue

ρ=λ/µ
1

Mean number of custmers in the M/M/1 and D/D/1 queuesMean number of custmers in the M/M/1 and D/D/1 queues

E[X]

M/M/1

D/D/1

(b) Mean number of customers in the D/D/1 and
M/M/1 queues

Figure 1: Exercise 18.

Answers

1. The mean time between two arrivals is the mean of an exponential
random variable with parameter λ, thus 1

λ .

2. The mean number of customers coming in the system is then λ.

3. The mean service time is 1
µ .

4. The mean number of customers that can be served by the server is then
µ.

5. According to exercise 14, the stationnary distribution exists when ρ =
λ
µ < 1 and is equal to πk = ρk(1− ρ).

6. The mean number of customers in the queue under the stationnary
distribution is by definition:

E[X] =
+∞∑
i=0

kπk =
+∞∑
i=0

kρk(1− ρ)

= (1− ρ)ρ

+∞∑
i=0

kρk−1 = (1− ρ)ρ

+∞∑
i=0

d

dρ
ρk

= (1− ρ)ρ
d

dρ

(
+∞∑
i=0

ρk

)
= (1− ρ)ρ

d

dρ

(
1

1− ρ

)
= (1− ρ)ρ

1

(1− ρ)2
= ρ

1

(1− ρ)

7. The response time R is defined as the time between the arrival of a
customer in the system and its departure. It corresponds to the time
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spent in the system (time to queue and time in the server). To compute
the mean response time, we use the result of exercise 26: E[X] =
λE[R]. For the M/M/1 queue, the result is thus

E[R] =
E[X]

λ
=

ρ

λ(1− ρ)

8. The waiting time W is defined as the time that the customer spent
in the system before being served. The mean waiting time is thus the
difference between the mean response time and the mean service time:

E[W ] = E[R]− 1

µ

9. The D/D/1 queue is a queue where both interarrivals and service time
are constant. Since, the arrival rate and service time are the same in
average, we suppose that a server will serve a customer in a time equal
to 1

µ and that the customers arrive at regular interval equal to 1
λ . If we

suppose that λ < µ, the service time is less than the interarrival. The
number of customers varies from 0 to 1 as shown in Figure 1(a). The
probability π1 that there is one customer in the system is then the ratio
1
µ
1
λ

= ρ (with ρ = λ
µ) and the probability π0 that there is no customer is

1 − ρ. The mean number of customers is then E[X] = 0π0 + 1π1 = ρ
and E[R] = 1

µ .

10. In Figure 1(b), we plot the mean number of customers E[X] for the
two queues when ρ varies from 0 to 1. For the D/D/1 queue, E[X]
tend to 1. For the M/M/1 queue, E[X] tends to infinity as ρ→ 1. So,
for the second case, even if the arrival rate is less than service rate, the
randomness of the interarrivals and service times leads to an explosion
of the number of customers when the system is close to saturation.

4.3 M/M/K

Exercise 19. M/M/K Let there be a M/M/K queue.

1. Compute the equilibrium distribution and give the existence condition
of this distribution.

2. Compute the mean number of customers in the queue under the equi-
librium distribution.

3. Compute the average response time.

4. Compute the average waiting time.
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4.4 M/M/+∞

Exercise 20. M/M/+∞ Let there be a M/M/+∞ queue.

1. Compute the equilibrium distribution and give the existence condition
of this distribution.

2. Compute the mean number of customers in the queue under the equi-
librium distribution.

3. Compute the average response time.

4. Compute the average waiting time.

4.5 M/M/K/K+C

Exercise 21. M/M/K/K+C Let there be a M/M/K/K+C queue.

1. Compute the equilibrium distribution and give the existence condition
of this distribution.

2. Compute the mean number of customers in the queue under the equi-
librium distribution.

3. Compute the average response time.

4. Compute the average waiting time.

Solution. It is of course an irreducible, homogeneous Markov process. Firstly,
we compute the infinitesimal generator A and we try to solve πA = 0 and∑K+C

i=0 πi = 1. Since E has a finite number of elements, there is always a
solution to these two equations.



−λ λ 0 0 0 0 ...
µ −(λ+ µ) λ 0 0 0 ...
0 2µ −(λ+ 2µ) λ 0 0 ...
0 0 3µ −(λ+ 3µ) λ 0 ...

...

...
... (K − 1)µ −((K − 1)µ+ λ) λ 0 ...
... 0 Kµ −(Kµ+ λ) λ ...
... ... 0 Kµ −(Kµ+ λ) λ 0 ...

...

...
... ... 0 0 µK −µK


πA leads to:
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−λπ0 +muπ1 = 0 (19)

λπ0 +−(λ+ µ)π1 + 2µπ2 = 0 (20)

λπ1 +−(λ+ 2µ)π2 + 3µπ3 = 0 (21)

...

λπk−1 +−(λ+ kµ)πk + (k + 1)µπk+1 = 0 if k < K (22)

...

λπk−1 +−(λ+ (K + C)µ)πk + (K + C)µπk+1 = 0

if K ≤ k ≤ K + C (23)

From equation 19, we get π1 = λ
µπ0 = ρπ0. From equation 20, we get

π2 = ρ2

2 π0. From equation 21, we get π3 = ρ3

3! π0. For k < K, we assume

that πk = ρk

k! π0. It is verified by equation 22. For K ≤ k ≤ K + C, from

equation 23 we get πk = 1
Kk−K

ρk

K!π0. From equation
∑K+C

i=0 πi = 1, we get

π0 =

[
K−1∑
i=0

ρi

i!
+
K+C∑
i=K

ρi

K!Ki−K

]−1

=

[
K−1∑
i=0

ρi

i!
+
ρK

K!

C+K∑
i=K

ρi−K

Ki−K

]−1

=

[
K−1∑
i=0

ρi

i!
+
ρK

K!

C∑
i=0

ρi

Ki

]−1

=

[
K−1∑
i=0

ρi

i!
+
ρK

K!

1− ρC+1

KC+1

1− ρ
K

]−1

For this queue there is no existence condition of the equilibrium distribution
since the number of states is finite (i = 0, ..,K + C).

The results for the other queue can be easily deduced from the formula
above. For instance, the equilibrium distribution for the M/M/K queue is
obtained as the limit of above equation when C tends to +∞ with the con-
dition that ρ

K < 1.

4.6 Some interesting results

Exercise 22. We try to compare two networks as represented in Figure 2(a).
In the first one, packets are big and in the second network packets are c times
smaller. Therefore, for a constant number of bytes to transport, the number
of packets network arriving in a node in the second network is c times greater.
We assume that the number of bytes that the servers can process is the same
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(b) Exercise 23

Figure 2: Comparison of different queues

for the two networks. So, servers in network B can process c times as many
packets.

The mathematical model is as follows We consider two M/M/1 queues
called A and B corresponding to each network. The arrival rate of A is λ,
and it is λc (with c > 1) for B. The service rate is µ for queue A, and µc
for queue B.

1. Compare the mean number of customers in the two queues.

2. Compare the average response time in the two queues.

3. If the average packet size in network A is L bytes, and L
c bytes in

network B, compute the mean number of bytes that the packets occupy
in the node.

4. Conclude.

Solution. For queue A (ρ = λ
µ):

E[X] =
ρ

1− ρ
and E[R] =

1

µ

ρ

1− ρ

For queue B:

E[X] =
ρ

1− ρ
and E[R] =

1

cµ

ρ

1− ρ

So, in the second case (B) where packets are c times smaller, the mean
number of packets in the queue are the same. It is however more efficient
because these packets are c times smaller and thus will take c times less
memory in the node. The response time is then also shorter (since the
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server capacity is constant), and is c times smaller than in queue A. The
reason for this difference, is variance. The variance increases with packet
size (for exponential law).

Exercise 23. We try to compare three systems. Arrival rates and service
rates are the same for the three systems. The only difference is that for
the first system there are two queues, in the second system there is only
one queue but two servers and for the third system there is one queue and
one server but the server is two times faster. The mathematical model is
as follows. We consider two independent M/M/1 queues to model the first
system. The arrival rate for each queue is λ

2 and the service rate of each
server is µ. For the second system, we consider a M/M/2 queue with arrival
rate λ and service rate µ for each server. We suppose that ρ

2 = λ
2µ < 1. For

the third system, we consider a M/M/1 queue with arrival rate λ and service
rate 2µ.

The three systems are represented in Figure 2(b). We suppose that ρ
2 =

λ
2µ < 1.

1. What is the load for the three systems?

2. What is the mean number of customers for the two systems?

3. What is the average response time for the two systems?

4. Conclude.

Solution.

The loads for the three systems are the same: λ
2µ .

The mean number of customers for the two M/M/1 queues (system 1) is

E [X1] = 2
ρ
2

1− ρ
2

=
ρ

1− ρ
2

For the queue M/M/2 (system 2), it is more complex. In equations on
M/M/K/K+C queue, we take C = +∞ and K = 2, we obtain:

πk =
ρk

2k−1
π0 for k ≥ 1

π0 =
1− ρ

2

1 + ρ
2

Now, we can compute the mean number of customers in the queue:

E [X2] =
+∞∑
k=0

kπk

= ρ

+∞∑
k=1

k
(ρ

2

)k−1
π0
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If x is real ∈]0, 1[, we get (to prove that, we have to consider that kxk−1

is the derivative of xk):

+∞∑
k=1

kxk−1 =
1

(1− x)2

With x = ρ
2 , we get:

E [X2] = ρ
+∞∑
k=1

k
(ρ

2

)k−1
π0

=
ρ

(1− ρ
2)2

π0

=
ρ

(1− ρ
2)2

1− ρ
2

1 + ρ
2

=
ρ

(1− ρ
2)(1 + ρ

2)

For the third system (M/M/1), we obtain:

E [X3] =
ρ
2

1− ρ
2

It appears that the mean number of customers is greater in system 1 and
2: E[X1] > E[X2] > E[X3]. It is due to the fact that in system 1, with
the two M/M/1 queues, when one server is empty and the other queue has
some customers, the first one is not use leading to the waste of a part of
the capacity. Moreover, the variance of the interarrival and service time is
really smaller for system 3 leading to better performances.

4.7 M/GI/1 and GI/M/1

When interarrival or service time is not exponential, the process describing
the number of customers is no more Markovian. The jump chain taken at
each jump of the process is not a Markov chain. However, for M/GI/1 and
GI/M/1 we can build a Markov chain from the Markov process. These jump
chains are those defined in Section 3.2.

Exercise 24. 1. Prove that the jump chain taken at the arrival time of
a GI/M/1 is a Markov chain.

2. Prove that the jump chain taken at the departure time of a M/GI/1 is
a Markov chain.

Solution. For the M/GI/1, we have to prove that

P (Xn = j|Xn−1 = in−1, ..., X0 = i0) = P
(
XS−n

= j|XS−n−1
= in−1, ..., XS−0

= i0

)
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Since the interarrival process is a sequence of i.i.d. exponential r.v., it is
memory less. Thus the number of customers coming between S−n−1 and S−n
is independent of the past. Moreover, there is only one service between S−n−1
and S−n (it is not cut), its duration is independent of the past since service
times are independently distributed. Therefore, the probability that the chain
changes from state i to state j depends only on i and j. Therefore, it is a
Markov chain.

For the M/GI/1 and GI/M/1 queues, the transition probabilities depend
on the considered ”GI” distribution. For instance, for M/GI/1 queue, from
state j there is a positive probability to go to state j − 1 if no customer
arrives between the two departures (between Xn−1 and Xn) and positive
probabilities to go to state j + k if k customers arrive during the service of
the customer currently in the server (between Xn−1 and Xn).

Exercise 25. We consider the M/D/1 and D/M/1 queues.

1. Compute the transition matrix of the jump chains for these two queues.

2. Compute the equilibrium distribution for the two queues. What are the
existence conditions?

3. Compute the mean number of customers and the mean response time.

Proposition 6. Khintchin-Pollazcek formula. The mean number of cus-
tomers X in a M/GI/1 queue is

E[X] = ρ+
ρ2
(

1 + var(Y )
E[Y ]2

)
2(1− ρ)

where Y is a random variable with the same distribution as the service time
of a customer and ρ = λ

µ .

5 Miscellaneous

Exercise 26. We consider two moving walkways. The first one has a con-
stant speed equal to 11km/h and the second 3km/h. Both moving walkways
have a length of 500 meters. We also assume that there is a person arriving
on each moving walkway each second.

• Give the number of persons on each walkway.

• Deduce a formula which links the number of customers in a system,
the mean arrival rate and the response time.
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